Question 15.85: A 1.25-in.-diameter solid shaft is subjected to an axial for...

A 1.25-in.-diameter solid shaft is subjected to an axial force of P = 7,000 lb, a horizontal force of V = 1,400 lb, and a concentrated torque of T = 220 lb-ft, acting in the directions shown in Figure P15.85. Assume L = 6.0 in. The ultimate failure strengths for this material are 36 ksi in tension and 50 ksi in compression. Use the Mohr failure criterion to evaluate the safety of this component at points H and K. Support your answers with appropriate documentation.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Section properties:

\begin{array}{ll}A=\frac{\pi}{4}(1.25  in. )^{2}=1.227185  in .^{2} \quad J=\frac{\pi}{32}(1.25  in .)^{4}=0.239684  in .^{4} \\Q=\frac{(1.25  in .)^{3}}{12}=0.162760  in .^{3} \quad I_{y}=I_{z}=\frac{\pi}{64}(1.25  in .)^{4}=0.119842  in. { }^{4}\end{array}

Equivalent forces at H and K:

\begin{aligned}&F_{x}=-7,000  lb \\&F_{y}=0  lb \\&F_{z}=1,400  lb\end{aligned}

 

 

 

Equivalent moments at H and K:

\begin{aligned}&M_{x}=220  lb – ft =2,640  lb – in . \\&M_{y}=-(1,400  lb )(6  in .)=-8,400  lb \text {-in. } \\&M_{z}=0  lb – in.\end{aligned}

Each of the non-zero forces and moments will be evaluated to determine whether stresses are created at the point of interest.

 

Consider point H.
Force F _{x} creates an axial stress at H. The magnitude of this normal stress is:

\sigma_{x}=\frac{7,000  lb }{1.227185  in .^{2}}=5,704.113  psi

Force F _{z} creates a transverse shear stress in the xz plane at H. The magnitude of this shear stress is:

\tau_{x z}=\frac{(1,400  lb )\left(0.162760  in .^{3}\right)}{\left(0.119842  in. ^{4}\right)(1.25  in .)}=1,521.097  psi

Moment M _{ x }, which is a torque, creates a torsion shear stress in the xz plane at H. The magnitude of this shear stress is:

\tau_{x z}=\frac{M_{x} c}{J}=\frac{(2,640  lb – in. )(1.25  in . / 2)}{0.239684  in .^{4}}=6,884.050  psi

Moment M _{ y } does not create bending stress at H because H is located on the neutral axis for bending about the y axis.

 

Summary of stresses at H:

\begin{aligned}&\sigma_{x}=-5,704.113  psi \\&\sigma_{z}=0  psi \\&\tau_{x z}=1,521.097  psi +6,884.050  psi =8,405.147  psi\end{aligned}

Principal stress calculations for point H:

\begin{aligned}\sigma_{p 1, p 2} &=\frac{(-5,704.113  psi )+(0  psi )}{2} \pm \sqrt{\left(\frac{(-5,704.113  psi )-(0  psi )}{2}\right)^{2}+(-8,405.147  psi )^{2}} \\&=-2,852.057  psi \pm 8,875.850  psi\end{aligned}

therefore,            \sigma_{p 1}=6,023.794  psi               and                    \sigma_{p 2}=-11,727.907  psi

Mohr failure criterion at point H:

\begin{aligned}\frac{\sigma_{p 1}}{\sigma_{U T}}-\frac{\sigma_{p 2}}{\sigma_{U C}} &=\frac{6,023.794  psi }{36,000  psi }-\frac{-11,727.907  psi }{50,000  psi } \\&=0.167-(-0.235) \\&=0.402 \quad \therefore \text { acceptable }\end{aligned}

 

Consider point K.
Force F _{x} creates an axial stress at K. The magnitude of this normal stress is:

\sigma_{x}=\frac{7,000  lb }{1.227185  in .^{2}}=5,704.113  psi

Force F _{z} does not cause either a normal stress or a shear stress at K.

Moment M _{x}, which is a torque, creates a torsion shear stress in the xy plane at K. The magnitude of this shear stress is:

\tau_{x y}=\frac{M_{x} c}{J}=\frac{(2,640  lb – in .)(1.25  in . / 2)}{0.239684  in. ^{4}}=6,884.050  psi

Moment M _{ y } creates bending stress at K. The magnitude of this stress is:

\sigma_{x}=\frac{M_{y} z}{I_{y}}=\frac{(8,400  lb – in .)(1.25  in . / 2)}{0.119842  in .^{4}}=43,807.591  psi

 

Summary of stresses at K:

\begin{aligned}\sigma_{x} &=-5,704.113  psi -43,807.591  psi =-49,511.704  psi \\\sigma_{y} &=0  psi \\\tau_{x y} &=-6,884.050  psi\end{aligned}

Principal stress calculations for point K:

\begin{aligned}\sigma_{p 1, p 2} &=\frac{(-49,511.704  psi )+(0  psi )}{2} \pm \sqrt{\left(\frac{(-49,511.704)-(0  psi )}{2}\right)^{2}+(-6,884.050  psi )^{2}} \\&=-24,755.852  psi \pm 25,695.182  psi\end{aligned}

therefore,               \sigma_{p 1}=939.330  psi                  and                        \sigma_{p 2}=-50,451.034  psi

Mohr failure criterion at point K:

\begin{aligned}\frac{\sigma_{p 1}}{\sigma_{U T}}-\frac{\sigma_{p 2}}{\sigma_{U C}} &=\frac{939.330  psi }{36,000  psi }-\frac{-50,451.034  psi }{50,000 psi } \\&=0.026-(-1.009) \\&=1.035 \quad \therefore \text { not acceptable }\end{aligned}

 

 

 

 

Related Answered Questions