Section properties:
\begin{array}{ll}A=\frac{\pi}{4}(1.25 in. )^{2}=1.227185 in .^{2} \quad J=\frac{\pi}{32}(1.25 in .)^{4}=0.239684 in .^{4} \\Q=\frac{(1.25 in .)^{3}}{12}=0.162760 in .^{3} \quad I_{y}=I_{z}=\frac{\pi}{64}(1.25 in .)^{4}=0.119842 in. { }^{4}\end{array}

Equivalent forces at H and K:
\begin{aligned}&F_{x}=-7,000 lb \\&F_{y}=0 lb \\&F_{z}=1,400 lb\end{aligned}

Equivalent moments at H and K:
\begin{aligned}&M_{x}=220 lb – ft =2,640 lb – in . \\&M_{y}=-(1,400 lb )(6 in .)=-8,400 lb \text {-in. } \\&M_{z}=0 lb – in.\end{aligned}
Each of the non-zero forces and moments will be evaluated to determine whether stresses are created at the point of interest.
Consider point H.
Force F _{x} creates an axial stress at H. The magnitude of this normal stress is:
\sigma_{x}=\frac{7,000 lb }{1.227185 in .^{2}}=5,704.113 psi
Force F _{z} creates a transverse shear stress in the xz plane at H. The magnitude of this shear stress is:
\tau_{x z}=\frac{(1,400 lb )\left(0.162760 in .^{3}\right)}{\left(0.119842 in. ^{4}\right)(1.25 in .)}=1,521.097 psi
Moment M _{ x }, which is a torque, creates a torsion shear stress in the xz plane at H. The magnitude of this shear stress is:
\tau_{x z}=\frac{M_{x} c}{J}=\frac{(2,640 lb – in. )(1.25 in . / 2)}{0.239684 in .^{4}}=6,884.050 psi
Moment M _{ y } does not create bending stress at H because H is located on the neutral axis for bending about the y axis.

Summary of stresses at H:
\begin{aligned}&\sigma_{x}=-5,704.113 psi \\&\sigma_{z}=0 psi \\&\tau_{x z}=1,521.097 psi +6,884.050 psi =8,405.147 psi\end{aligned}
Principal stress calculations for point H:
\begin{aligned}\sigma_{p 1, p 2} &=\frac{(-5,704.113 psi )+(0 psi )}{2} \pm \sqrt{\left(\frac{(-5,704.113 psi )-(0 psi )}{2}\right)^{2}+(-8,405.147 psi )^{2}} \\&=-2,852.057 psi \pm 8,875.850 psi\end{aligned}
therefore, \sigma_{p 1}=6,023.794 psi and \sigma_{p 2}=-11,727.907 psi
Mohr failure criterion at point H:
\begin{aligned}\frac{\sigma_{p 1}}{\sigma_{U T}}-\frac{\sigma_{p 2}}{\sigma_{U C}} &=\frac{6,023.794 psi }{36,000 psi }-\frac{-11,727.907 psi }{50,000 psi } \\&=0.167-(-0.235) \\&=0.402 \quad \therefore \text { acceptable }\end{aligned}
Consider point K.
Force F _{x} creates an axial stress at K. The magnitude of this normal stress is:
\sigma_{x}=\frac{7,000 lb }{1.227185 in .^{2}}=5,704.113 psi
Force F _{z} does not cause either a normal stress or a shear stress at K.
Moment M _{x}, which is a torque, creates a torsion shear stress in the xy plane at K. The magnitude of this shear stress is:
\tau_{x y}=\frac{M_{x} c}{J}=\frac{(2,640 lb – in .)(1.25 in . / 2)}{0.239684 in. ^{4}}=6,884.050 psi
Moment M _{ y } creates bending stress at K. The magnitude of this stress is:
\sigma_{x}=\frac{M_{y} z}{I_{y}}=\frac{(8,400 lb – in .)(1.25 in . / 2)}{0.119842 in .^{4}}=43,807.591 psi

Summary of stresses at K:
\begin{aligned}\sigma_{x} &=-5,704.113 psi -43,807.591 psi =-49,511.704 psi \\\sigma_{y} &=0 psi \\\tau_{x y} &=-6,884.050 psi\end{aligned}
Principal stress calculations for point K:
\begin{aligned}\sigma_{p 1, p 2} &=\frac{(-49,511.704 psi )+(0 psi )}{2} \pm \sqrt{\left(\frac{(-49,511.704)-(0 psi )}{2}\right)^{2}+(-6,884.050 psi )^{2}} \\&=-24,755.852 psi \pm 25,695.182 psi\end{aligned}
therefore, \sigma_{p 1}=939.330 psi and \sigma_{p 2}=-50,451.034 psi
Mohr failure criterion at point K:
\begin{aligned}\frac{\sigma_{p 1}}{\sigma_{U T}}-\frac{\sigma_{p 2}}{\sigma_{U C}} &=\frac{939.330 psi }{36,000 psi }-\frac{-50,451.034 psi }{50,000 psi } \\&=0.026-(-1.009) \\&=1.035 \quad \therefore \text { not acceptable }\end{aligned}