Question 6.71: A 1/4 by 1 1/2 -in steel bar has a 3/4 -in drilled hole loca...

A \frac{1}{4} by 1 \frac{1}{2} -in steel bar has a \frac{3}{4} -in drilled hole located in the center, much as is shown in Table A–15–1. The bar is subjected to a completely reversed axial load with a deterministic load of 1200 lbf. The material has a mean ultimate tensile strength of \bar{S}_{u t}=80  kpsi.
(a) Estimate the reliability.
(b) Conduct a computer simulation to confirm your answer to part a.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

\begin{aligned}&F_{a}=1200  lbf \\&S_{u t}=80  kpsi\end{aligned}

(a) Strength

\begin{aligned}& k _{a}=2.67(80)^{-0265} L N (1,0.058)=0.836 L N (1,0.058) \\&k_{b}=1 \\& k _{c}=1.23(80)^{-0.0778} L N (1,0.125)=0.875 L N (1,0.125)\end{aligned}

 

\begin{aligned}S _{e}^{\prime} &=0.506(80) L N (1,0.138)=40.5 L N (1,0.138)  kpsi \\S _{e} &=[0.836 L N (1,0.058)](1)[0.875 L N (1,0.125)][40.5 L N (1,0.138)] \\\bar{S}_{e} &=0.836(1)(0.875)(40.5)=29.6  kpsi \\C_{S e}&=\left(0.058^{2}+0.125^{2}+0.138^{2}\right)^{1 / 2}=0.195\end{aligned}

 

Stress: Fig. A-15-1;   d / w=0.75 / 1.5=0.5, K_{t}=2.18. From Eqs. (6-78), (6-79) and Table 6-15

K _{f}=\frac{2.18 L N (1,0.10)}{1+\frac{2(2.18-1)}{2.18} \frac{5 / 80}{\sqrt{0.375}}}=1.96 L N (1,0.10)

\begin{aligned}& \sigma _{a}= K _{f} \frac{F_{a}}{(w-d) t}, \quad C_{\sigma}=0.10 \\&\bar{\sigma}_{a}=\frac{\bar{K}_{f} F_{a}}{(w-d) t}=\frac{1.96(1.2)}{(1.5-0.75)(0.25)}=12.54  kpsi \\&\bar{S}_{a}=\bar{S}_{e}=29.6  kpsi\end{aligned}

 

\begin{aligned}z &=-\frac{\ln \left[\left(\bar{S}_{a} / \bar{\sigma}_{a}\right) \sqrt{\left(1+C_{\sigma}^{2}\right) /\left(1+C_{S}^{2}\right)}\right]}{\ln \left[\left(1+C_{\sigma}^{2}\right)\left(1+C_{S}^{2}\right)\right]} \\&=-\frac{\ln \left[(29.6 / 12.48) \sqrt{\left(1+0.10^{2}\right) /\left(1+0.195^{2}\right)}\right]}{\sqrt{\ln \left[\left(1+0.10^{2}\right)\left(1+0.195^{2}\right)\right]}}=-3.9\end{aligned}

 

From Table A-20p_{f}=4.81\left(10^{-5}\right) \Rightarrow R=1-4.81\left(10^{-5}\right)=0.999955

(b) All computer programs will differ in detail.

___________________________________________________________________________________________________________________

Eq. (6-78) : \bar{K}_{f}=\frac{K_{t}}{1+\frac{2\left(K_{t}-1\right)}{K_{t}} \frac{\sqrt{a}}{\sqrt{r}}}

Eq. (6-79) : K _{f}=\bar{K}_{f} L N \left(1, C_{K_{f}}\right)

 

Table 6–15
Heywood’s Parameter
√a and coefficients of
variation C_{K f} for steels
Notch Type \sqrt{ a }(\sqrt{\text { in }}) ,S_{\text {ut }} \text{in kpsi} \sqrt{ a }(\sqrt{ m m }) , S_{\text {ut }} \text{in MPa} Coefficient of Variation C_{K f}
Transverse hole 5 / S_{u t} 174 / S_{u t} 0.1
Shoulder 4 / S_{u t} 139 / S_{u t} 0.11
Groove 3 / S_{u t} 104 / S_{u t} 0.15

Related Answered Questions