Question 2.6.10: A 1.5-in-diameter bar has been machined from an AISI 1050 co...

A 1.5-in-diameter bar has been machined from an AISI 1050 cold-drawn bar.

This part is to withstand a fluctuating tensile load varying from 0 to 16 kip.

Because of the ends,and the fillet radius, a fatigue stress-concentration factor K_f   is \ 1.85 \ for \ 10^6 or larger life.

Find S_a \ and \ S_m and the factor of safety guarding against fatigue and first-cycle yielding, using (a) the Gerber fatigue line and (b) the ASME-elliptic fatigue line.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

We begin with some preliminaries. From Table A–20,

Table A–20
Deterministic ASTM Minimum Tensile and Yield Strengths for Some Hot-Rolled (HR) and Cold-Drawn (CD) Steels [The strengths listed are estimated ASTM minimum values in the size range 18 to 32 mm \left(\frac{3}{4} \text { to } 1 \frac{1}{4} \text { in }\right) \text {. } These strengths are suitable for use with the design factor defined in Sec. 1–10, provided the materials conform to ASTM A6 or A568 requirements or are required in the purchase specifications. Remember that a numbering system is not a specification.] Source: 1986 SAE Handbook, p. 2.15.
1 2 3 4 5 6 7 8
Tensile

Strength,
MPa (kpsi)

Yield Strength,
MPa (kpsi)
Elongation in
2 in, %
UNS No. SAE and/or
AISI No.
 Processing Reduction in
Area, %
Brinell
Hardness
G10060 1006 HR 300 (43) 170 (24) 30 55 86
CD 330 (48) 280 (41) 20 45 95
G10100 1010 HR 320 (47) 180 (26) 28 50 95
CD 370 (53) 300 (44) 20 40 105
G10150 1015 HR 340 (50) 190 (27.5) 28 50 101
CD 390 (56) 320 (47) 18 40 111
G10180 1018 HR 400 (58) 220 (32) 25 50 116
CD 440 (64) 370 (54) 15 40 126
G10200 1020 HR 380 (55) 210 (30) 25 50 111
CD 470 (68) 390 (57) 15 40 131
G10300 1030 HR 470 (68) 260 (37.5) 25 42 137
CD 520 (76) 440 (64) 15 35 149
G10350 1035 HR 500 (72) 270 (39.5) 20 40 143
CD 550 (80) 460 (67) 12 35 163
G10400 1040 HR 520 (76) 290 (42) 18 40 149
CD 590 (85) 490 (71) 12 35 170
G10450 1050 HR 570 (82) 310 (45) 16 40 163
CD 630 (91) 530 (77) 12 35 179
G10500 1060 HR 620 (90) 340 (49.5) 15 35 179
CD 690 (100) 580 (84) 10 30 197
G10600 1060 HR 680 (98) 370 (54) 12 30 201
G10800 1080 CD 770 (112) 420 (61.5) 10 25 229
G10950 1095 HR 830 (120) 460 (66) 10 25 248

S_{ut}= 100 \ kpsi \ and \ S_y= 84 kpsi.
Note that F_a= F_m= 8 kip.

The Marin factors are, deterministically,
ka= 2.70(100)^{−0.265}= 0.797 : Eq. (6–19)

k_a=as^b_{ut}

, Table 6–2,p. 288

Table 6–2 Parameters for Marin Surface Modification Factor, Eq. (6–19)
Surface Finish Factor a Exponent
b
S_{ut}, kpsi S_{ut}, MPa
Ground 1.34 1.58 −0.085
Machined or cold-drawn 2.7 4.51 −0.265
Hot-rolled 14.4 57.7 −0.718
As-forged 39.9 272 −0.995

k_b= 1 (axial loading, see k_c)

k_c=0.85 : Eq. (6–26), p. 290

k_d=k_e=k_f=1

S_e=0.797\left(1\right) 0.850\left(1\right) \left(1\right) \left(1\right) 0.5\left(100\right) =33.9 kpsi: Eqs. (6–8), (6–18), p. 282, p. 287
The nominal axial stress components

(6–8)

S_{e}^{\prime}= \begin{cases}0.5 S_{u t} & S_{u t} \leq 200 \mathrm{kpsi}(1400 \mathrm{MPa}) \\ 100 \mathrm{kpsi} & S_{u t}>200 \mathrm{kpsi} \\ 700 \mathrm{MPa} & S_{u t}>1400 \mathrm{MPa}\end{cases}

(6–18)

S_{e}=k_{a} k_{b} k_{c} k_{d} k_{c} k_{f} S_{e}^{\prime}

\sigma _{a0} \ and \ \sigma _{m0} are \sigma_{a0}=\frac{4F_a}{\pi d^2} =\frac{4\left(8\right) }{\pi 1.5^2}=4.53 kpsi   \sigma _{m0}=\frac{4F_m}{\pi d^2} =\frac{4\left(8\right) }{\pi 1.5^2} =4.53 kpsi.

 

Applying  K_f  to both components \sigma_{a0} and \sigma _{m0} constitutes a prescription of no notch
yielding:

 

\sigma _a=K_f\sigma_{a0}=1.85\left(4.53\right) =8.38 \ kpsi \ =\sigma _m

(a) Let us calculate the factors of safety first. From the bottom panel from Table 6–7

Table 6–7
Amplitude and Steady Coordinates of Strength and Important
Intersections in First Quadrant for Gerber and Langer Failure Criteria
Intersecting Equations Intersection Coordinates
\frac{S_a}{S_e} +\left(\frac{S_m}{S_{ut}}\right)^2  =1
Load liner=\frac{S_a}{S_m}
S_a=\frac{r^2S^2_{ut}}{S_e} \left[-1+\sqrt{1+\left(\frac{2S_e}{rS_{ut}} \right)^2 } \right]

S_m=\frac{S_a}{r}

\frac{S_a}{S_y} +\frac{S_m}{S_y} =1
Load liner=\frac{S_a}{S_m}
S_a=\frac{rS_y}{1+r}
S_m=\frac{rS_y}{1+r}
\frac{S_a}{S_e} +\left(\frac{S_m}{S_{ut}}\right)^2  =1
\frac{S_a}{S_y} +\frac{S_m}{S_y} =1
S_m=\frac{2S^2_{ut}}{2S_e} \left[1-\sqrt{1+\left(\frac{2S_e}{S_{ut}} \right)^2 \left(1-\frac{S_y}{S_e} \right) } \right]
S_{a}=S_{y}-S_{m}, r_{\text {crit }}=S_{a} / S_{m}
Fatigue factor of safety
n_f=\frac{1}{2} \left(\frac{S_{ut}}{\sigma _m} \right)^2\frac{\sigma _a}{S_e}\left[-1+\sqrt{1+\left(\frac{2\sigma _mS_e}{S_{ut}\sigma _a} \right)^2 } \right]    \ \sigma _m\gt  0

 

the factor of safety for fatigue is:

 

n_f=\frac{1}{2} \left(\frac{100}{8.38} \right)^2\left(\frac{8.38}{33.9} \right) \left\{-1+\sqrt{1+\left[\frac{2\left(8.38\right)33.9 }{100\left(8.38\right) } \right]^2 } \right\} =3.66

From Eq. (6–49) the factor of safety guarding against first-cycle yield is

n_y=\frac{s_y}{\sigma _a+\sigma _m} =\frac{84}{8.38+8.38} =5.01

Thus, we see that fatigue will occur first and the factor of safety is 3.68. This can be seen in Fig. 6–28 where the load line intersects the Gerber fatigue curve first at point B.
If the plots are created to true scale it would be seen that

n_f = {OA}/{OB}.

From the first panel of Table 6–7, r =\sigma _a/\sigma _m= 1,

 

S_a=\frac{\left(1\right)^2100^2 }{2\left(33.9\right) } \left\{-1+\sqrt{1+\left[\frac{2\left(33.9\right) }{\left(1\right)100 } \right]^2 } \right\} =30.7 kpsi

 

S_m=\frac{S_a}{r} =\frac{30.7}{1} =30.7 kpsi

As a check on the previous result,

n_f = {OA}/{OB}  = {S_a}/{\sigma _a}={S_m}/{\sigma _m} = {30.7}/{8.38}=3.66

 

and we see total agreement.
We could have detected that fatigue failure would occur first without drawing Fig. 6–28 by calculating r_{crit}  .

From the third row third column panel of Table 6–7, the intersection point between fatigue and first-cycle yield is

 

S_m=\frac{100^2}{2\left(33.9\right) } \left[1-\sqrt{1+\left(\frac{2\left(33.9\right) }{100} \right)^2\left(1-\frac{84}{33.9} \right) } \right] =64.0 kspi

 

S_a=S_y-S_m=84-64=20 kpsi

The critical slope is thus

r_{crit}=\frac{S_a}{S_m} =\frac{20}{64} =0.312

which is less than the actual load line of r = 1.

This indicates that fatigue occurs before first-cycle-yield.
(b) Repeating the same procedure for the ASME-elliptic line, for fatigue

 

n_f=\sqrt{\frac{1}{\left({8.38}/{33.9}\right)^2+\left({8.38}/{84}\right)^2 } } =  3.75

 

Again, this is less than n_y= 5.01 and fatigue is  predicted to occur first.

From the first row second column panel of Table 6–8

Table 6–8
Amplitude and Steady Coordinates of Strength and Important Intersections in First Quadrant for ASME-
Elliptic and Langer Failure Criteria
Intersecting Equations Intersection Coordinates
\left(\frac{S_u}{S_e}\right)^2  +\left(\frac{S_m}{S_{y}}\right)^2  =1
Load liner=\frac{S_a}{S_m}
S_a=\sqrt{\frac{r^2S^2_{e}S^2_y}{S^2_e+r^2S^2_y} } 

S_m=\frac{S_a}{r}

\frac{S_a}{S_y} +\frac{S_m}{S_y} =1
Load liner=\frac{S_a}{S_m}
S_a=\frac{rS_y}{1+r}
S_m=\frac{S_y}{1+r}
\left(\frac{S_a}{S_e}\right)^2  +\left(\frac{S_m}{S_{y}}\right)^2  =1
\frac{S_a}{S_y} +\frac{S_m}{S_y} =1
S_a=0 , \frac{2S_yS^2_e}{S^2_e+S^2_y}
S_{m}={S_y} – {S_a}, r_{ctrit}={S_a}/{S_m}
Fatigue factor of safety
n_f=\sqrt{\frac{1}{\left({\sigma _a}/{S_{e}}\right)^2+\left({\sigma _m}/{S_{y}}\right)^2  } }

, with r = 1 , we obtain the coordinates S_a \ and \ S_m of point B in Fig. 6–29 as

S_a=\sqrt{\frac{\left(1\right)^233.9^2\left(84\right)^2 }{33.9^2+\left(1\right)84^2 } } =31.4 kpsi

, S_m=\frac{S_a}{r} =\frac{31.4}{1} =31.4 kpsi

 

To verify the fatigue factor of safety, n_f={S_a}/{\sigma _a}={31.4}/{8.38}=3.75.

As before, let us calculate r_{crit}.

From the third row second column panel of Table 6–8,

 

S_a=\frac{2\left(84\right)33.9^2 }{33.9^2+84^2}=23.5  ,  S_m=S_y-S_a=84-23.5=60.5 kpsi

 

r_{crit}=\frac{S_a}{S_m} =\frac{23.5}{60.5} =0.388

 

which again is less than r = 1, verifying that fatigue occurs first with n_f = 3.75.
The Gerber and the ASME-elliptic fatigue failure criteria are very close to each other and are used interchangeably. The ANSI/ASME Standard B106.1M–1985 uses ASME-elliptic for shafting.

6.28
6.29

Related Answered Questions