Question 4.204E: A 1 Gallon tank initially is empty and we want to have 0.03 ...

A 1 Gallon tank initially is empty and we want to have 0.03 lbm of R-410A in it. The R-410A comes from a line with saturated vapor at 20 F. To end up with the desired amount we cool the can while we fill it in a slow process keeping the can and content at 20 F. Find the final pressure to reach before closing the valve and the heat transfer.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

C.V. Tank:
Continuity Eq.4.20:          m _{2}-0= m _{ i }

Energy Eq.4.21:        m _{2} u _{2}-0= m _{ i } h _{ i }+{ }_{1} Q _{2}

State 2: 20 F,    v _{2}= V / m _{2}=1\left(231 / 12^{3}\right) / 0.030=4.456   ft ^{3} / lbm

From Table F.9.2 we locate the state between 15 and 20 psia.

P _{2}=15+(20-15) \frac{4.456-4.6305}{3.4479-4.6305}=15.74   \text { psia }

 

u _{2}=112.68   Btu / lbm,

 

State i Table F.9.1:      h _{ i }=119.07   Btu / lbm

Now use the energy equation to solve for the heat transfer

\begin{aligned}{ }_{1} Q _{2} &= m _{2} u _{2}- m _{ i } h _{ i }= m _{2}\left( u _{2}- h _{ i }\right) \\&=0.03 \times(112.68-119.07)=-0.192   Btu\end{aligned}

 

………………………………

Eq.4.20: \left(m_{2}-m_{1}\right)_{ C.V. }=\sum m_{i}-\sum m_{e}

Eq.4.21:

\begin{aligned}E_{2}-E_{1}=Q_{ C.V. }-W_{ C.V. } &+\sum m_{i}\left(h_{i}+\frac{1}{2} V _{i}^{2}+g Z_{i}\right) \\&-\sum m_{e}\left(h_{e}+\frac{1}{2} V _{e}^{2}+g Z_{e}\right)\end{aligned}
1
F.9.1
F.9.1'
F.9.1''
F.9.1'''
2
3

Related Answered Questions