A 1 kg block of copper at 350°C is quenched in a 10 kg oil bath initially at ambient temperature of 20°C. Calculate the final uniform temperature (no heat transfer to/from ambient) and the change of exergy of the system (copper and oil).
A 1 kg block of copper at 350°C is quenched in a 10 kg oil bath initially at ambient temperature of 20°C. Calculate the final uniform temperature (no heat transfer to/from ambient) and the change of exergy of the system (copper and oil).
C.V. Copper and oil. C _{ co }=0.42 kJ / kg K , \quad C _{ oil }=1.8 kJ / kg K
\begin{aligned}& m _{2} u _{2}- m _{1} u _{1}={ }_{1} Q _{2}-{ }_{1} W _{2}=0= m _{ co } C _{ co }\left( T _{2}- T _{1}\right)_{ co }+( mC )_{ oil }\left( T _{2}- T _{1}\right)_{ oil } \\&1 \times 0.42\left( T _{2}-350\right)+10 \times 1.8\left( T _{2}-20\right)=0 \\&18.42 T _{2}=507 \quad \Rightarrow \quad T =27.5^{\circ} C =300.65 K\end{aligned}For each mass copper and oil, we neglect work term (v = C) so Eq.8.28 is
\left(\phi_{2}-\phi_{1}\right)= u _{2}- u _{1}- T _{o}\left( s _{2}- s _{1}\right)= mC \left[\left( T _{2}- T _{1}\right)- T _{o} \ln \left( T _{2} / T _{1}\right)\right]\begin{aligned}& m _{ cv }\left(\phi_{2}-\phi_{1}\right)_{ cv }+ m _{\text {oil }}\left(\phi_{2}-\phi_{1}\right)_{\text {oil }}= \\&\qquad \begin{aligned}=& 0.42 \times\left[(-322.5)-293.15 \ln \frac{300.65}{623.15}\right]+10 \times 1.8\left[7.5-293.15 \ln \frac{300.65}{293.15}\right] \\&=-45.713+1.698=- 4 4 . 0 k J\end{aligned}\end{aligned}
……………………………………..
Eq.8.28 : \phi_{2}-\phi_{1}=\left(e_{2}-T_{0} s_{2}+P_{0} v_{2}\right)-\left(e_{1}-T_{0} s_{1}+P_{0} v_{1}\right)