Question 13.3: A 1 mH coil with Q = 100 is used in a tuned amplifier. The t...

A 1 mH coil with Q = 100 is used in a tuned amplifier. The transistor has β = 100 and r_{o} = 100 kΩ and input resistance R_{i} = R_{B} || r_{π} = 10 kΩ.

(a) Determine the value of tuning capacitance (C) such that the amplifier has a maximum gain at f_{o} = 50 kHz. Also calculate the value of this gain for the given L = 1 mH.

(b) Determine the bandwidth of the amplifier.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The small-signal model of the amplifier whose output circuit modifies with the circuit equivalent established.

Given                            Q_{coil} = 100, f_{O} = 50 kHz and L = 1  mH

(a)                                   f_{O}=\frac{1}{2\pi \sqrt{LC} }

Therefore,                      C =\frac{1}{(2\pi f_{O} )^{2} L}= \frac{1}{(2\pi \times 50\times 10^{3} )^{2}\times 1\times 10^{-3} }= 10  nF

Q_{coil} =\frac{\omega _{0} L}{r}

Here,                               r =\frac{\omega _{0} L}{Q_{coil}}= \frac{2\pi \times 50\times 10^{3}\times 1\times 10^{-3}}{100}= 3.14  \Omega

req = Q^{2}_{coil} × r = (100)^{2} × 3.14 = 31.4  k \Omega

Amplifier gain, A_{VO} = –\frac{\beta }{R_{i} }× (r_{o} || r_{eq}); R_{L} =\infty , no load in this case.

R = r_{o} || r_{eq} = 100  k \Omega || 31.4  k \Omega = 23.9  k \Omega

A_{VO} =-\frac{100\times 23.9\times 10^{3}}{10\times 10^{3}}= 239

(b)                                    Q_{circuit} = \frac{R}{\omega _{0} L} = \frac{23.9\times 10^{3}}{2\pi \times 50\times 10^{3}\times 1\times 10^{-3}}= 76.11

BW =\frac{f_{O} }{Q_{circuit}}= \frac{50\times 10^{3} }{76.11}= 657  Hz

Related Answered Questions