Question 5.42: A 10 k W, 250 V D C self excited shunt generator driven at 1...

A 10 k W, 250 V D C self excited shunt generator driven at 1000 rpmhas armature resistance 0.15 ohm and field current 1.64 A. Find rated load, armature induced emf, torque developed and efficiency when the rotational losses are 540 watt. Assume constant speed operation.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
\text { Here, } \quad \text { output power }=10 kW =10 \times 1000 W

 

R_{a}=0.15 \Omega ; I_{s h}=1.64 A ; V=250 V ; N=1000 rpm

 

\text { Load current, } I_{L}=\frac{10 \times 1000}{250}=40 A

 

\text { Armature current, } I_{a}=I_{L}+I_{s h}=40+1.64=41.64 A

 

\text { Induced or generated emf, } E_{g}=V+I_{a} R_{a}

 

=250+41.64 \times 0.15=256.246 V

 

\text { Power developed in the armature, } \quad \omega T=E_{g} I_{a}

 

\begin{array}{l}\therefore\\\text { Torque developed, } T=\frac{E_{g} I_{a}}{\omega}=\frac{256 \cdot 246 \times 41 \cdot 64 \times 60}{2 \pi \times 1000} \quad\left(\text { since } \omega=\frac{2 \pi N}{60}\right)\end{array}

 

=101.89 Nm

 

\text { Power developed }=E_{g} I_{a}=256.246 \times 41.64=10670 W

 

\begin{aligned}\text { Mechanical losses } &=540 W \\\text { Power input } &=10670+540=11210 W \\\text { Power output } &=10 kW =10 \times 1000 W \\\text { Efficiency, } \eta &=\frac{\text { output }}{\text { input }} \times 100=\frac{10 \times 1000}{11210} \times 100= 8 9.2 \% \end{aligned}

Related Answered Questions