Question : A 10 -m-long metal pipe kpipe =15 W / m.K has an inner diame...

A 10 -m-long metal pipe (kpipe =15W/mK) \left(k_{\text {pipe }}=15 W / m \cdot K \right) has an inner diameter of5 cm an outer diameter of 6 cm is used for transporting hot saturated water vapor at a flow rate of 0.05 kg / s (Fig.8-33). The water vapor enters and exits the pipe at 350C 350^{\circ} C  and 290C 290^{\circ} C, respectively. In order to prevent thermal burn on individuals working in the vicinity of the pipe, the pipe is covered with a 2.25- cm thick layer of insulation (kins =0.95W/mK) \left(k_{\text {ins }}=0.95 W / m \cdot K \right)  to ensure that the outer surface temperature Ts,o T_{s, o}  is below 45C 45^{\circ} C. Determine whether or not the thickness of the insulation is sufficient to alleviate the risk of thermal burn hazards.

 

 

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

SOLUTION In this example, the concepts of PtD are applied in conjunction with the concepts of internal forced convection and steady onedimensional heat conduction. The inner pipe surface temperature Ts,i T_{s, i}  is determined using the concept of internal forced convection. Having determined the inner surface temperature, the outer surface temperature Ts,o T_{s, o}  is determined using one-dimensional heat conduction through the pipe wall and insulation.

 Assumptions Steady operating conditions exist. 2 Radiation effects are negligible. 3 Convection effects on the outer pipe surface are negligible. 4 One dimensional heat conduction through pipe wall and insulation. 5 The thermal conductivities of pipe wall and insulation are constant. 6 Thermal resistance at the interface is negligible. 7 The surface temperatures are uniform. 8 The inner surfaces of the tube are smooth.

Properties The properties of saturated water vapor at Tb=(Ti+Te)/2=320C T_{b}=\left(T_{i}+T_{e}\right) / 2=320^{\circ} C  are cp=7900J/kgK,k=0.0836W/mK,μ=2.084×105kg/ms c_{p}=7900 J / kg \cdot K , k=0.0836 W / m \cdot K , \mu=2.084 \times 10^{-5} kg / m \cdot s, and Pr=1.97 \operatorname{Pr}=1.97  (Table A-9). The thermal conductivities of the pipe and the insulation are given to be kpipe =15W/mK k_{\text {pipe }}=15 W / m \cdot K  and kins=0.95W/mK k_{ ins }=0.95 W / m \cdot K, respectively.

Analysis The Reynolds number of the saturated water vapor flow in the pipe is

Re=4m˙πDiμ=4(0.05kg/s)π(0.05m)(2.084×105kg/ms)=61,096>10,000 Re =\frac{4 \dot{m}}{\pi D_{i} \mu}=\frac{4(0.05 kg / s )}{\pi(0.05 m )\left(2.084 \times 10^{-5} kg / m \cdot s \right)}=61,096>10,000

Therefore, the flow is turbulent and the entry lengths in this case are roughly

LhLt10D=10(0.05m)=0.5m L_{h} \approx L_{t} \approx 10 D=10(0.05 m )=0.5 m  (assume fully developed turbulent flow)

The Nusselt number can be determined from the Gnielinski correlation:

Nu=(f/8)(Re1000)Pr1+12.7(f/8)0.5(Pr2/31)=(0.02003/8)(61,0961000)(1.97)1+12.7(0.02003/8)0.5(1.972/31)=217.45 Nu =\frac{(f / 8)( Re -1000) Pr }{1+12.7(f / 8)^{0.5}\left( Pr ^{2 / 3}-1\right)}=\frac{(0.02003 / 8)(61,096-1000)(1.97)}{1+12.7(0.02003 / 8)^{0.5}\left(1.97^{2 / 3}-1\right)}=217.45

where

f=(0.790lnRe1.64)2=0.02003 f=(0.790 \ln Re -1.64)^{-2}=0.02003

Thus, the convection heat transfer coefficient for the saturated water vapor flow inside the pipe is

h=kDiNu=0.0836W/mK0.05m(217.45)=363.58W/m2Kh=\frac{k}{D_{i}} Nu =\frac{0.0836 W / m \cdot K }{0.05 m }(217.45)=363.58 W / m ^{2} \cdot K

The inner pipe surface temperature is

Te=Ts,i(Ts,iTi)exp(hAsm˙cp)Ts,i=271.52C T_{e}=T_{s, i}-\left(T_{s, i}-T_{i}\right) \exp \left(-\frac{h A_{s}}{\dot{m} c_{p}}\right) \quad \longrightarrow \quad T_{s, i}=271.52^{\circ} C

 

 where As=π(0.05m)(10m)=1.571m2 \text { where } \quad A_{s}=\pi(0.05 m )(10 m )=1.571 m ^{2}

the thermal resistances for the pipe wall and the insulation are

Rpipe =ln(Dinterface /Di)2πkpipe L=ln(0.06/0.05)2π(15W/mK)(10m)=1.9345×104K/W R_{\text {pipe }}=\frac{\ln \left(D_{\text {interface }} / D_{i}\right)}{2 \pi k_{\text {pipe }} L}=\frac{\ln (0.06 / 0.05)}{2 \pi(15 W / m \cdot K )(10 m )}=1.9345 \times 10^{-4} K / W

 

Rins =ln(Do/Dinterface )2πkins L=ln(0.105/0.06)2π(0.95W/mK)(10m)=9.3753×103K/W R_{\text {ins }}=\frac{\ln \left(D_{o} / D_{\text {interface }}\right)}{2 \pi k_{\text {ins }} L}=\frac{\ln (0.105 / 0.06)}{2 \pi(0.95 W / m \cdot K )(10 m )}=9.3753 \times 10^{-3} K / W

where Do=0.06m+2(0.0225m)=0.105m D_{o}=0.06 m +2(0.0225 m )=0.105 m

The total thermal resistance and the rate of heat transfer are

Rtotal =Rpipe +Rins =9.5688×103K/W and Q˙=Ts,iTs,0Rtotal =m˙cp(TiTe) R_{\text {total }}=R_{\text {pipe }}+R_{\text {ins }}=9.5688 \times 10^{-3} K / W \text { and } \dot{Q}=\frac{T_{s, i}-T_{s, 0}}{R_{\text {total }}}=\dot{m} c_{p}\left(T_{i}-T_{e}\right)

Thus, the outer surface temperature is

Ts,o=Ts,iRtotal m˙cp(TiTe) T_{s, o} =T_{s, i}-R_{\text {total }} \dot{m} c_{p}\left(T_{i}-T_{e}\right)

 

=271.52C(9.5688×103K/W)(0.05kg/s)(7900J/kgK)(350290)C =271.52^{\circ} C -\left(9.5688 \times 10^{-3} K / W \right)(0.05 kg / s )(7900 J / kg \cdot K )(350-290)^{\circ} C

 

=44.7C =44.7^{\circ} C

Discussion The insulation thickness of 2.25 cm is just barely sufficient to keep the outer surface temperature below 45C 45^{\circ} C. To ensure the outer surface to be a few degrees below 45C 45^{\circ} C, the insulation thickness should be increased slightly to 2.3 cm, which would make Ts,0=41C T_{s, 0}=41^{\circ} C.

ta9
ta9a