Question 8.23: A 10 MV A, 13.8 kV, 50 Hz synchronous generator yields the f...

A 10 MV A, 13.8 kV, 50 Hz synchronous generator yields the following test data:

OC test                          I_{f} = 842 A at rated voltage

SC test                           I_{f} = 226 A at rated armature current

(a) Calculate its pu adjusted synchronous reactance OC test revealed that the armature resistance per phase is 0.75 \Omega .

(b) The generator is operating at power output of 8.75 MW, 0.9 pf lagging. Calculate

(i) its field current and reactive power output

(ii) the rotor power angle and reactive power output if the field current is adjusted to 842 A while the net shaft power supplied by the prime mover remains constant

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a)                                  X_{s}(\text { adjusted })=\left.\frac{V_{ rated } / \sqrt{3}}{I_{S C}}\right|_{\text {At } I_{f} \text { corresponding to } V_{O C}=V_{\text {rated }}}

Rated armature current

\sqrt{3} V_{\text {rated }} I_{a}(\text { rated })=10 MVA

 

I_{a}(\text { rated })=\frac{10 \times 10^{3}}{\sqrt{3} \times 13.8}=418.4 A

At                                 I_{f}=842 A , \quad I_{S C}=\frac{418.4}{226} \times 842=1558.8 A

The                          X_{s} \text { (adjusted) }=\frac{13.8 \times 10^{3} / \sqrt{3}}{1558.8}=5 \Omega

Base values                           ( MVA )_{ B }=10,( kV )_{ B }=13.8

 

X_{s}( pu )=5 \times \frac{10}{(13.8)^{2}}=0.2625

 

R_{a}=0.75 \Omega

 

\bar{Z}_{s}=0.75+j 5=5.06 \angle 81.5^{\circ} \Omega

 

Z_{s}=5.06 \Omega, \quad \theta=81.5^{\circ}, \quad \alpha=8.5^{\circ}

(b) (i)                                 pf = 0.9 lagging ;    \phi=\cos ^{-1} 0.9=25.84^{\circ}

 

P_{e}=8.75 MW

 

\tan \phi=\frac{Q_{e}}{P_{e}}

 

Q_{e}=P_{e} \tan \phi=8.75 \tan 25.84^{\circ}

= 4.24 MVA, positive as it a lagging.

To find the field current, we need excitation emf. On per phase basis

V_{t}=13.8 / \sqrt{3}=7968 V

 

\frac{P_{e}}{3}=V_{t} I_{a} \cos \phi

 

\frac{8.75 \times 10^{6}}{3}=7968 I_{a} \times 0.9

Or                                I_{a}=406.7 A , \quad \bar{I}_{a}=406.7 \angle-25.8^{\circ}

 

=2058 \angle 55.7^{\circ} V

Generator equation                              \bar{E}_{f}=\bar{V}_{t}+\bar{I}_{a} \bar{Z}_{s}

Or                                    \bar{E}_{f}=7968 \angle 0^{\circ}+2058 \angle 55.7^{\circ}

 

=9128+j 1700=9285 \angle 10.5^{\circ} V

The phasor diagram is drawn in Fig. 8.70

E_{f}=9285   or    16.04 kV (line)

From the modified air-gap line

I_{f}=\frac{842}{13.8} \times 16.04=978.7 A

Ohmic loss

3 I_{a}^{2} R_{a}=3 \times(406.7)^{2} \times 0.75

= 0.372 MW

P_{m}(\text { in })=8.75+0.372=9.122 MW

(ii) From Eq. (8.83)

P_{m}(\text { in })=\frac{E_{f}^{2}}{Z_{s}^{2}} R_{a}+\frac{V_{t} E_{f}}{Z_{s}} \sin (\delta-\alpha)                               (i)

Field current adjusted to

I_{f}=842 A

 

E_{f}=V_{O C}=V_{t} \text { (rated) }=7968 V =7.968 kV

 

P_{m} \text { (in) }=9.122 / 3=3.04 MW   per phase

Substituting in Eq. (i)

3.04=\frac{(7968)^{2}}{(5.06)^{2}} \times 0.75+\frac{(7.968)^{2}}{(5.06)} \sin (\delta-\alpha)

 

118=\frac{(7968)^{2}}{(5.06)^{2}} \sin (\delta-\alpha)

 

\sin (\delta-\alpha)=0.094

 

\delta-\alpha=5.4^{\circ}

 

\delta=5.4^{\circ}+8.5^{\circ}=13.9^{\circ}

 

Reactive power output (Eq. 8.82b)

Q=-\frac{V_{t}^{2}}{Z_{s}^{2}} X_{s}+\frac{V_{t} E_{f}}{Z_{s}} \cos (\delta+\alpha)

Or                                      Q=-\frac{(7.968)^{2}}{(5.06)^{2}} \times 5+\frac{(7.968)^{2}}{(5.06)} \cos \left(13.9^{\circ}+8.5^{\circ}\right)

Or                                          Q=-0.82 MVAR / phase

Or                                         Q=2.46 \text { MVAR, leading }

8 23

Related Answered Questions