Question : A 100 MW, 60 kV, 3-, 4-pole, 50Hz, Y-connected synchronous ...

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
P=100 M \omega \quad, V_{L_{1}}=60 k V

 

R_{a}=0,15 \Omega / {ph} \quad x_{s}=15 \Omega / {p} {h}

 

\text { Power }=75 \% \text { of } 100=75Mw   at  0,8 {lag}

 

E=v+I2

 

I=\frac{75 \times 10^{6}}{\sqrt{3} \times 60 \times 10^{3} \times 0,8}=14,073 {kV} / {Ph}

 

E_{9}=76,54 {~L} 14,073 {kV}

 

\delta=\sqrt{3} E_{g} \cdot I_a^∗.

 

\delta= \sqrt{3} \cdot 72,993 L^{4} \cdot 78 \times 902,11 \quad\lfloor 36-86

 

\delta=75,37+j 92,858 mvA

 

Q=92,858 MVAR

 

T=\frac{p}{w} \quad ; w_{s}=\frac{2 \pi}{60} \times \frac{120 F}{1^{\prime}}=\frac{2 \pi}{60} \times  \frac{120^{2} \times 50}{4}=50 \pi

 

\Rightarrow \quad T=\frac{75 \times 10^{6}}{50 \pi}=477,46 \quad k N.m

 

\text { if the excitation decressed by 2oy }

 

E g_{\text {new}}=0,8 \times 76,54 kv=61,232 {kv}=35,35 {kv} / {ph}

 

85,35 \times 10^{3} L 14,073=\frac{60}{\sqrt{3}}+[I_a \cos \phi+jI_a \sin \phi][0,15+j 15]

 

34.29+j8.595=[\frac{60}{\sqrt{3}}+(I_a cos \phi+j I_a sin \phi)]+j(15 I_a cos \phi)

 

I_a cos \phi=902.11 \times 0.8=721.688A+0.15 I_a sin \phi

 

By equating real and imaginary

 

8.595 \times 10^3=15 \times721.688+0.15 I_a sin \phi

 

9.23 kv=0.15 I_a sin \phi

 

I_a sin \phi=-14868.8A

 

\frac{I_a sin \phi}{I_a cos \phi}=\frac{14868.8}{721.688}⇒tan  \phi=20.602

 

\phi=-87.22

 

cos \phi=0.0485⇒I_a=\frac{721.688}{0.0485}=14886.3A

 

\delta=\sqrt{3}I_aI_g=\sqrt{3}\times61.232L14.073\times14886.3 L+87.22

 

=-309+1548.23 MvA

 

Q=1548.23 MvA (supplied)

 

T=\frac{P}{w_s}=477.46 KN.m