Question 6.5: A 1035 steel has a tensile strength of 70 kpsi and is to be ...

A 1035 steel has a tensile strength of 70 kpsi and is to be used for a part that sees 450°F in service. Estimate the Marin temperature modification factor and (S_{e})_{450◦} if
(a) The room-temperature endurance limit by test is (S′_{e})_{70◦} = 39.0 kpsi.
(b) Only the tensile strength at room temperature is known.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) First, from Eq. (6–27),

k_{d }= 0.975 + 0.432(10^{−3})T_{F} −  0.115(10^{−5})T^{2}_{F}+ 0.104(10^{−8})T^{3}_{F} − 0.595(10^{−12})T^{4}_{F}                            ( 6–27)

k_{d} = 0.975 + 0.432(10^{−3})(450) − 0.115(10^{−5})(450^{2}) + 0.104(10^{−}8)(450^{3}) − 0.595(10^{−12})(450^{4}) = 1.007

Thus,

(Se)_{450◦} = k_{d} (S′_{e})_{70◦} = 1.007(39.0) = 39.3   kpsi

(b) Interpolating from Table 6–4 gives

(S_{T} /S_{RT} )_{450◦} = 1.018 + (0.995 − 1.018) \frac {450 − 400}{500 − 400} = 1.007

Thus, the tensile strength at 450°F is estimated as

(S_{ut} )_{450◦} = (S_{T} /S_{RT} )_{450}◦ (S_{ut} )_{70◦} = 1.007(70) = 70.5  kpsi

From Eq. (6–8) then,

S′_{e}=\begin{cases}0.5S_{ut} & S_{ut} ≤ 200 kpsi (1400 MPa) \\100 kpsi & S_{ut} > 200 kpsi \\ 700 MPa & S_{ut} > 1400 MPa \end{cases}                    (6-8)

(S_{e})_{450◦} = 0.5 (S_{ut} )_{450◦} = 0.5(70.5) = 35.2   kpsi

Part a gives the better estimate due to actual testing of the particular material.

Table 6–4   Effect of Operating Temperature on the Tensile Strength of Steel.* (S_{T} = tensile strength at operating temperature; S_{RT} = tensile strength at room temperature; 0.099 ≤ \hat {σ} ≤ 0.110)

S_{T}/S_{RT} Temperature, °F S_{T}/S_{RT} Temperature, °C
1.000 70 1.000 20
1.008 100 1.010 50
1.020 200 1.020 100
1.024 300 1.025 150
1.018 400 1.020 200
0.995 500 1.000 250
0.963 600 0.975 300
0.927 700 0.943 350
0.872 800 0.900 400
0.797 900 0.843 450
0.698 1000 0.768 500
0.567 1100 0.672 550
0.549 600

*Data source: Fig. 2–9.

 

2.9

Related Answered Questions