Question 2.6.5: A 1035 steel has a tensile strength of 70 kpsi and is to be ...

A 1035 steel has a tensile strength of 70 kpsi and is to be used for a part that sees 450°F in service.
Estimate the Marin temperature modification factor and (Se)450\left(S_e\right) _{450◦}
(a) The room-temperature endurance limit by test is (Se)70=39.0kpsi\left(S_{e}^{\prime}\right)_{70^{\circ}}=39.0 \mathrm{kpsi} .
(b) Only the tensile strength at room temperature is known.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) First, from Eq. (6–27),
kd=0.975+0.432(103)TF0.115(105)TF2+0.104(108)TF30.595(1012)FF4k_d=0.975+0.432\left(10^{-3}\right) T_F-0.115\left(10^{-5}\right) T^2_F+0.104\left(10^{-8}\right) T^3_F-0.595\left(10^{-12}\right)F^4_F

 

kd=0.975+0.432(103)(450)0.115(105)(450)2+0.104(108)(450)30.595(1012)(450)4=1.007k_d=0.975+0.432\left(10^{-3}\right) \left(450\right) -0.115\left(10^{-5}\right) \left(450\right) ^2 +0.104\left(10^{-8}\right) \left(450\right)^3-0.595\left(10^{-12}\right)\left(450\right)^4=1.007

 

Thus,
(Se)450kd(Sˊe)70=1.007(39.0)=39.3\left(S_e\right) _{450◦}k_d\left(\acute{S}_e \right) _{70◦}=1.007\left(39.0\right) =39.3

 

(b) Interpolating from Table 6–4 gives

Table 6–4 Effect of Operating Temperature on the Tensile Strength of Steel.
*  (STS_T = tensile strength at operating temperature;
SRT S_{RT} = tensile strength at room temperature;
0.099 ≤ ˆ σ ≤ 0.110)
Temperature, °C ST/SRTS_T/S_{RT} Temperature, °F ST/SRTS_T/S_{RT}
20 1.000 70 1
50 1.01 100 1.008
100 1.02 200 1.02
150 1.025 300 1.024
200 1.02 400 1.018
250 1 500 0.995
300 0.975 600 0.963
350 0.943 700 0.927
400 0.9 800 0.872
450 0.843 900 0.797
500 0.768 1000 0.698
550 0.672 1100 0.567
600 0.549
(ST/SRT)450=1.018+(0.9951.018)450400500400=1.007\left({S_T}/{S_{RT}}\right)_{450◦} =1.018+\left(0.995-1.018\right) \frac{450-400}{500-400} =1.007

 

Thus, the tensile strength at 450°F is estimated as

 

(Sut)450=(ST/SRT)450(Sut)70=1.007(70)=70.5\left(S_{ut}\right) _{450◦}=\left({S_T}/{S_{RT}}\right)_{450◦} \left(S_{ut}\right) _{70◦}=1.007\left(70\right) =70.5

From Eq. (6–8) then,

Se={0.5SutSut200kpsi(1400MPa)100kpsiSut>200kpsi700MPaSut>1400MPaS_{e}^{\prime}=\left\{\begin{array}{ll} 0.5 S_{u t} & S_{u t} \leq 200 \mathrm{kpsi}(1400 \mathrm{MPa}) \\100 \mathrm{kpsi} & S_{u t}>200 \mathrm{kpsi} \\700 \mathrm{MPa} & S_{u t}>1400 \mathrm{MPa}\end{array}\right.      (6–8)

 

(Sut)450=0.5(Sut)450=0.5(70.5)=35.2\left(S_{ut}\right) _{450◦}=0.5\left(S_{ut}\right) _{450◦} =0.5\left(70.5\right) =35.2

 

Part a gives the better estimate due to actual testing of the particular material.

Related Answered Questions