Question 3.30: A 150 kVA transformer 2400/240 V rating has the following pa...

A 150 kVA transformer 2400/240 V rating has the following parameters:
R_{1} = 0.2\Omega , R_{2} = 2\times 10^{-3}
X_{1} = 0.45\Omega , X_{2} = 4.5 \times10^{-3}
R_{i} = 10 k\Omega ,X_{m} = 1.6 k\Omega (referred to HV)
Calculate the leakage inductances, magnetizing inductance, mutual inductance and self-inductances.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

a=\frac{N_{1} }{N_{2} } \approx \frac{2400}{240} =10
X_{1} = 2 \pi fl_{1} ,l_{1}=\frac{0.45}{314} \times 10^{-3} = 0.01433 mH
X_{2}= 2 \pi fl_{2} ,l_{2}=\frac{4.5\times 10^{-3} }{314} = 0.01433 mH
Magnetizing inductance
2 \pi fL_{m1}=X_{m} =1.6\times 10^{3}
L_{m1}=5.096 H
Self inductances
l_{1} =L_{1} -L_{m1}
L_{1}=5.096 + 0.01433 \times 10^{–3} = 5.096 H
L_{m1}=aM,M=\frac{L_{m1}}{a} =\frac{5.096}{10}=0.5096 H
l_{2}=L_{2}-\frac{M}{a}
L_{2}=l_{2}+ \frac{M}{a} = 0.01433\times 10^{-3} + \frac{0 5096}{10} =0.05098 H
Coupling factor   k=\frac{M}{\sqrt{L_{1} L_{2}} }= \frac{0.5096}{\sqrt{5.096\times 0.05098} } =0.09998\simeq 1

Related Answered Questions