Question 13.199: A 2-kg ball B is traveling horizontally at 10 m/s when it st...

A 2-kg ball B is traveling horizontally at 10 m/s when it strikes 2-kg ball A. Ball A is initially at rest and is attached to a spring with constant 100 N/m and an unstretched length of 1.2 m. Knowing the coefficient of restitution between A and B is 0.8 and friction between all surfaces is negligible, determine the normal force between A and the ground when it is at the bottom of the hill.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Ball B impacts on ball A. Use the principle of impulse and momentum.

\Sigma m \mathbf{v}_{1}+\Sigma \mathbf{I m p}_{1 \rightarrow 2}=\Sigma m \mathbf{v}_{2}

Velocity components: \quad \quad \quad \nu_{0}=10 \mathrm{~m} / \mathrm{s}

\begin{aligned}& \left(\nu_{0}\right)_{x}=\nu_{0} \quad\left(\nu_{0}\right)_{n}=\nu_{0} \cos 40^{\circ} \quad\left(\nu_{0}\right)_{t}=\nu_{0} \sin 40^{\circ} \\& \left(\nu_{A}\right)_{x}=\nu_{A} \quad\left(\nu_{A}\right)_{n}=\nu_{A} \cos 40^{\circ} \\& \left(\nu_{B}\right)_{x}=\left(\nu_{B}\right)_{n} \cos 40^{\circ}+\left(\nu_{B}\right)_{t} \sin 40^{\circ}\end{aligned}

Impulse-momentum for ball B alone.

t-direction:

\begin{aligned}m_{B}\left(\nu_{0}\right)_{t} & =m_{B}\left(\nu_{B}\right)_{t} \\\left(\nu_{B}\right)_{t} & =\left(\nu_{0}\right)_{t}=10 \sin 40^{\circ}=6.4279 \mathrm{~m} / \mathrm{s} \quad \quad \text{(1)}\end{aligned}

Impulse-momentum for balls A and B.

x-direction ←

\begin{aligned}m_{B} \nu_{0}+0 & =m_{A} \nu_{A}+m_{B}\left(\nu_{B}\right)_{x}+m_{B}\left(\nu_{B}\right)_{t} \\(2)(10)+0 & =2 \nu_{A}+2\left[\left(\nu_{B}\right)_{n} \cos 40^{\circ}+6.4279 \sin 40^{\circ}\right] \\2 \nu_{A}+ & 2\left(\nu_{B}\right)_{n} \cos 40^{\circ}=11.7365 \quad \quad \text{(1)}\end{aligned}

Coefficient of restitution. 

\begin{gathered}(e=0.8) \\\left(\nu_{B}\right)_{n}=\left(\nu_{A}\right)_{n}=e\left[0-\left(\nu_{0}\right)_{n}\right] \\\left(\nu_{B}\right)_{n}-\nu_{A} \cos 40^{\circ}=-(0.8)(10) \cos 40^{\circ} \quad \quad \text{(2)}\end{gathered}

Solving Eqs. (1) and (2) simultaneously,

\nu_{A}=6.6566 \mathrm{~m} / \mathrm{s} \quad\left(\nu_{B}\right)_{n}=-1.0291 \mathrm{~m} / \mathrm{s}

As ball A moves from the impact location to the lowest point on the path, the spring compresses and the elevation decreases. Since friction is negligible, energy is conserved.

\begin{aligned}T_{1}+V_{1} & =T_{2}+V_{2} \\\frac{1}{2} m_{A} \nu_{A}^{2}+\left(V_{e}\right)_{1}+\left(V_{g}\right)_{1} & =\frac{1}{2} m_{A} \nu_{2}^{2}+\left(V_{e}\right)_{2}+\left(V_{g}\right)_{2}\end{aligned}

Position 1: (Just after impact.)

\begin{aligned}T_{1} & =\frac{1}{2} m_{A} \nu_{A}^{2}=\frac{1}{2}(2)(6.6566)^{2}=44.3101 \mathrm{~J} \\\left(V_{e}\right)_{1} & =0 \quad \text { (The spring is unstretched. }) \\\left(V_{g}\right)_{1} & =0 \quad \text { (Datum) }\end{aligned}

Position 2: (Lowest point on path.)

T_{2}=\frac{1}{2} m_{A} \nu_{2}^{2}=\frac{1}{2}(2) \nu_{2}^{2}=\nu_{2}^{2}

For the spring,

\begin{gathered}x_{2}=l_{2}-l_{0}=0.4 \mathrm{~m}-1.2 \mathrm{~m}=0.8 \mathrm{~m} \\F_{e}=k x_{2}=(100)(0.8)=80 \mathrm{~N} \\\left(V_{2}\right)_{e}=\frac{1}{2} k x_{2}^{2}=\frac{1}{2}(100)(0.8)^{2}=32 \mathrm{~J}\end{gathered}

Elevation above datum: \quad \quad \quad h_{2}=-0.4 \mathrm{~m}

\left(V_{2}\right)_{g}=m_{A} g h_{2}=(2)(9.81)(-0.4)=-7.848

Conservation of energy:

\begin{gathered}44.310+0+0=\nu_{2}^{2}+32-7.848 \\\nu_{2}^{2}=20.158 \mathrm{~m}^{2} / \mathrm{s}^{2} \quad \nu_{2}=4.489 \mathrm{~m} / \mathrm{s}\end{gathered}

Normal acceleration at lowest point on path:

a_{n}=\frac{\nu_{2}^{2}}{\rho}=\frac{20.158}{0.7}=28.798 \mathrm{~m} / \mathrm{s}^{2} \quad \mathbf{a}_{n}=28.8 \mathrm{~m} / \mathrm{s}^{2} \uparrow

Apply Newton’s second law to the ball.

\begin{aligned}& +\uparrow  \Sigma F =m a_n:N-mg-F_e-ma_n\\& N=m g+F_{e}+m a_{n}  \\& =(2)(9.81)+80+(2)(28.798) \quad \quad \quad \quad  N= 157.2  N \blacktriangleleft\end{aligned}

13.199.
13.199...

Related Answered Questions