Question 9.32: A 3- phase 4-pole, 50 Hz, 400 V, 8 kW, star connected squirr...

A 3- phase 4-pole, 50 Hz, 400 V, 8 kW, star connected squirrel cage induction has the following data:

R_{1} = 0.4  \Omega /phase; R_{2} = 0.25  \Omega /phase; X_{1} = X_{2S}= 0.5  \Omega /phase; X_{m} = 15.5  \Omega / phase .

The motor develops full-load internal torque at a slip of 4%.

Assume that the shunt branch is connected across the supply, determine (i) slip at maximum torque (ii) maximum torque developed at rated voltage and frequency (iii) torque developed at the start at rated voltage and frequency.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Here, R_{1} = 0.4  \Omega ; X_{1} = 0.5  \Omega;R_{2}= 0.25  \Omega ; X_{2S}= 0.5  \Omega \\[0.5cm] X_{m}=15.5  \Omega ; S= 0.04; V_{L} = 400  V; f = 50  Hz.

Phase voltage, V = \frac{V_{L}}{\sqrt{3} } = \frac{400}{\sqrt{3} } = 231  V

Slip to develop maximum torque, S_{m}= \frac{R_{2}}{X_{2S}} = \frac{0.25}{0.5} = \mathbf{0.5}

For maximum torque development

Equivalent impedance of the motor at S_{m}

\overline{Z} _{eq1\left(m\right) } = \left(R_{1} + \frac{R_{2}}{S_{m}} \right) + j\left(X_{1} + X_{2S}\right) = \left(0.4 + \frac{0.25}{0.5} \right) + j\left(0.5 + 0.5\right) \\[0.5cm] \qquad \quad \, = 0.9 + j 1 = 1.345 \angle 48^{\circ } ohm

 

Rotor current, \overline{I} _{2} = \frac{\overline{E}_{2S} }{\overline{Z} } =\frac{231}{1.345\angle 48^{\circ }}\left(here, E_{2}=V  since  K=1\right) \\[0.5cm] \hspace{30 pt} \qquad \quad \quad \, = 171.7\angle -48^{\circ }

I _{2} = \mathbf{171.7  A}

 

Rotor  copper  loss = 3 \overline{I}^{2}_{2} R_{2} = 3 \times \left(171.7\right)^{2} \times 0.25 = 22122  W

 

Power input to rotor, P_{2} = P_{2} = \frac{Rotor  copper  loss}{S_{m}} = \frac{22122}{0.5} = 44244  W

Synchronous speed of revolving field,

N_{S} = \frac{120 f}{P} = \frac{120 \times 50}{4} = 1500  rpm

 

Maximum torque developed, T_{m} = \frac{P_{2}}{\omega _{S}} = \frac{P_{2} \times 60}{2 \pi N_{S}} = \frac{44244 \times 60}{2 \pi \times 1500} = \mathbf{281.67  Nm}

For starting torque:

At start, slip, S_{S} = 1.0

Equivalent motor impedance, \overline{Z}_{eq1\left(S\right) } = \left\lgroup R_{1} + \frac{R_{2}}{S_{S}} \right\rgroup + j\left(X_{1}+ X_{2S}\right) \\[0.5cm] \hspace{30 pt} \hspace{30 pt} \hspace{30 pt} \hspace{30 pt} \qquad \quad \quad = \left(0.4 + \frac{0.25}{1} \right) + j\left(0.5+ 0.5\right) = \left(0.46 + j1\right)  ohm \\[0.5cm] \hspace{30 pt} \hspace{30 pt} \hspace{30 pt} \hspace{30 pt} \qquad \quad \quad = \left(1.1 \angle 65.3^{\circ }\right)  ohm.

Rotor current at start, \overline{I}_{2S } = \frac{\overline{E}_{2S} }{\overline{Z}_{S} } = \frac{231}{1.1\angle 65.3^{\circ }} = 210 \angle \boxtimes 65.3^{\circ }

I_{2S } = \mathbf{210  A}

 

Rotor  copper  loss = 3 I^{2}_{2S } R_{2}= 3\times \left(210\right)^{2} \times 0.25 = 33075  W

 

Power input to rotor, P_{2S } = \frac{33075}{1} = 33075  W

Starting torque developed, T_{s} = \frac{P_{2S }}{\omega _{S}} = \frac{33.75 \times 60}{2\pi \times 1500} = \mathbf{210.6  Nm}

Related Answered Questions