Question 9.31: A 3-phase induction motor with a unity turn ratio has the fo...

A 3-phase induction motor with a unity turn ratio has the following data/phase referred to stator side:

Stator impedance                              Z1=(1.0+j 3.0) ohm;\overline{Z}_{1} = \left(1.0 + j  3.0\right)  ohm;

Rotor standstill impedance             Z2S=(1.0+j2.0)ohm;\overline{Z}_{2S}^{\prime } = \left(1.0 + j 2.0\right) ohm;

No-load or exciting impedance,    ZO=(10+j50) ohmZ_{O} = \left(10 + j 50\right)  ohm

Supply voltage,                                  V=240 VV = 240  V

Estimate the stator current, equivalent rotor current, mechanical power developed, power factor, slip and efficiency when the machine is operating at 4% slip.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The equivalent circuit for the motor as per data is shown in Fig. 9.37.

Equivalent load resistance, RL=R2K2(1SS)=1(1)2(10.040.04)=24 ΩR^{\prime }_{L} = \frac{R_{2}}{K^{2}} \left(\frac{1-S}{S} \right) = \frac{1}{\left(1\right)^{2} }\left(\frac{1 – 0.04}{0.04} \right) = 24  \Omega

Effective impedance per phase, Zeff=R1+R2K2+RL+jX1+X2SK2=1+1(1)2+24+j3+2(1)2=(26+j5) Ω\overline{Z} _{eff} = \left\lgroup R_{1} + \frac{R_{2}}{K^{2}} + R^{\prime }_{L}\right\rgroup + j \left\lgroup X_{1}+ \frac{X_{2S}}{K^{2}} \right\rgroup \\[0.5cm] \hspace{30 pt} \hspace{30 pt} \hspace{30 pt} \hspace{30 pt} \qquad \quad \quad = \left\lgroup 1 + \frac{1}{\left(1\right) ^{2}} + 24\right\rgroup + j \left\lgroup 3 + \frac{2}{\left(1\right) ^{2}} \right\rgroup = \left(26 + j 5\right)  \Omega

Stator load current, I1=VZeq=240(26+j5)=24026.4710.9=(9.0610.9)A=9.06(cos10.9jsin10.9)=(8.896j1.713) A\overline{I} _{1}^{\prime } = \frac{\overline{V} }{\overline{Z}_{eq} } = \frac{240}{\left(26 + j5\right) } \\[0.5cm] \hspace{30 pt} \hspace{30 pt} \qquad \quad \enspace = \frac{240}{26.47\angle 10.9^{\circ }} = \left(9.06\angle -10.9^{\circ }\right) A \\[0.5cm] \hspace{30 pt} \hspace{30 pt} \qquad \quad \enspace = 9.06 \left(\cos 10.9^{\circ } – j\sin 10.9^{\circ }\right) = \left(8.896 – j 1.713\right)  A

Equivalent rotor current, I2=I1K=9.061=9.06 AI_{2} = \frac{I^{\prime }_{1}}{K} = \frac{9.06}{1} =\mathbf{9.06  A}

No-load current, I0=VZ0=240(10+j50)=2405178.7=4.778.7=(0.921j4.61) A\overline{I} _{0} = \frac{\overline{V} }{\overline{Z} _{0}} = \frac{240}{\left(10 + j 50\right) } = \frac{240}{51\angle 78.7^{\circ }} \\[0.5cm] \hspace{30 pt} \qquad \qquad \quad \, = 4.7\angle -78.7^{\circ } = \left(0.921 – j 4.61\right)  A

Stator equivalent current, I1=I1+I0=(8.896j1.713)+(0.921j4.61)=(9.817j6.323)=(11.732.78) A\overline{I} _{1} = \overline{I}^{\prime }_{1} + \overline{I}_{0} = \left(8.896 – j 1.713\right) + \left(0.921 – j4.61\right) \\[0.5cm] \hspace{30 pt} \hspace{30 pt} \hspace{30 pt} \qquad \quad = \left(9.817 – j 6.323\right) = \left(11.7\angle -32.78^{\circ }\right)  A

I1=11.7 A\therefore I _{1} = \mathbf{11.7  A}

 

Power factor, cosϕ1=cos32.78=0.84 lagging\cos \phi _{1} = \cos 32.78^{\circ }= \mathbf{0.84  lagging}

Mechanical power developed=3(I1)2RL=3(9.06)2×24=5910 WMechanical  power  developed = 3 \left(I^{\prime }_{1}\right) ^{2} R^{\prime }_{L} = 3 \left(9.06\right)^{2} \times 24 = \mathbf{5910  W}

 

Motor efficiency, η=Outputinput=59103×240×11.7×0.84=0.8352=83.52%\eta = \frac{Output }{input} = \frac{5910 }{3 \times 240 \times 11.7 \times 0.84} \\[0.5cm] \hspace{30 pt} \qquad \qquad \quad = 0.8352 = \mathbf{83.52\% }

9.37

Related Answered Questions