Question 6.7: A [30/0/90]T graphite–epoxy laminate is cured at 175°C and c...

A [30/0/90]_T graphite–epoxy laminate is cured at 175°C and cooled to room temperature (20°C). Initially the moisture content of the laminate is zero. However, the laminate is subjected to a humid environment for several weeks, resulting in an increase of moisture content of 0.5% (by weight). Determine:

a. Midplane strains and curvatures
b. Ply strains relative to the x–y coordinate system
c. Ply stresses relative to the x–y coordinate system

which are present following the increase in moisture content. Use material properties listed for graphite–epoxy in Table 3.1, and assume each ply has a thickness of 0.125 mm.

TABLE 3.1
Typical Properties of Common Unidirectional Composites

Property Glass/ Epoxy Kevlar/ Epoxy Graphite/ Epoxy
E_{11} 55 GPa 100 GPa 170 GPa
(8.0 Msi) (15 Msi) (25 Msi)
E_{22} 16 GPa 6 GPa 10 GPa
(2.3 Msi) (0.90 Msi) (1.5 Msi)
ν_{12} 0.28 0.33 0.3
G_{12} 7.6 GPa 2.1 GPa 13 GPa
(1.1 Msi) (0.30 Msi) (1.9 Msi)
 \sigma _{11}^{fT} 1050 MPa 1380 MPa 1500 MPa
(150 ksi) (200 ksi) (218 ksi)
\sigma _{11}^{fC} 690 MPa 280 MPa 1200 MPa
(100 ksi) (40 ksi) (175 ksi)
\sigma _{22}^{fT} 45 MPa 35 MPa 50 MPa
(5.8 ksi) (2.9 ksi) (7.25 ksi)
\sigma _{22}^{fC} 120 MPa 105 MPa 100 MPa
(16 ksi) (15 ksi) (14.5 ksi)
\tau ^f_{22} 40 MPa 40 MPa 90 MPa
(4.4 ksi) (4.0 ksi) (13.1 ksi)
\alpha _{11} 6.7 μm/m−°C −3.6 μm/m−°C −0.9 μm/m−°C
(3.7 μin./in.\boxtimes  °F) (−2.0 μin./in.−°F) (−0.5 μin./in.−°F)
\alpha _{22} 25 μm/m−°C 58 μm/m−°C 27 μm/m−°C
(14 μin./in.−°F) (32 μin./in.−°F) (15 μin./in.−°F)
\beta _{11} 100 μm/m−%M 175 μm/m−%M 50 μm/m−%M
(100 μin./in.−%M) (175 μin./in.−%M) (50 μin./in.−%M)
\beta _{22} 1200 μm/m−%M 1700 μm/m−%M 1200 μm/m−%M
(1200 μin./in.−%M) (1700 μin./in.−%M) (1200 μin./in.−%M)
Ply 0.125 mm 0.125 mm 0.125 mm
Thickness (0.005 in.) (0.005 in.) (0.005 in.)
The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Note that this is the same laminate considered in Sample Problem 6.6,and the midplane strains and curvatures, ply strains, and ply stresses that will be induced immediately upon cooldown by the change in temperature have already been calculated. These quantities will all be modified due to the slow diffusion of water molecules into the epoxy matrix.

a. Midplane strains and curvatures: The laminate has experienced a change in moisture content ΔM = +0.5%, and consequently is subjected moisture stress and moment resultants. The effective moisture expansion coefficients for each ply are calculated using Equation 5.28, repeated here for convenience:

\beta _{xx}=\beta _{11}\cos^2(\theta )+\beta _{22}\sin^2(\theta )

 

\beta _{yy}=\beta _{11}\sin^2(\theta )+\beta _{22}\cos^2(\theta )             (5.28) (repeated)

 

\beta _{xy}=2\cos(\theta )\sin(\theta )(\beta _{11}-\beta _{12})

From Table 3.1, the moisture expansion coefficients for graphite–epoxy (relative to the 1–2 coordinate system) are β_{11} = 150 μm/m−%M and β_{22} = 4800 μm/m−%M. Therefore,

For ply #1 (the 30°ply):

\beta _{xx}^{(1)}=(150μm/m-\%M)\cos^2(30^\circ )+(4800μm/m -\%M)\sin^2(30^\circ )=1310μm/m −\%M

 

\beta _{yy}^{(1)}=(150μm/m-\%M)\sin^2(30^\circ )+(4800μm/m -\%M)\cos^2(30^\circ )=3640μm/m −\%M

 

\beta _{xy}^{(1)}=2\cos(30)\sin(30)[(150 -4800)μm/m – \%M] = -4030μrad/\%M

For ply #2 (the 0°ply):

\beta _{xx}^{(2)}=(150μm/m-\%M)\cos^2(0^\circ )+(4800μm/m -\%M)\sin^2(0^\circ )=150μm/m −\%M

 

\beta _{yy}^{(2)}=(150μm/m-\%M)\sin^2(0^\circ )+(4800μm/m -\%M)\cos^2(0^\circ )=4800μm/m −\%M

 

\beta _{xy}^{(2)}=2\cos(0)\sin(0)[(150 -4800)μm/m – \%M] = 0μrad/\%M

For ply #3 (the 90°ply):

\beta _{xx}^{(3)}=(150μm/m-\%M)\cos^2(90^\circ )+(4800μm/m -\%M)\sin^2(90^\circ )=4800μm/m −\%M

 

\beta _{yy}^{(3)}=(150μm/m-\%M)\sin^2(90^\circ )+(4800μm/m -\%M)\cos^2(90^\circ )=150μm/m −\%M

 

\beta _{xy}^{(3)}=2\cos(90)\sin(0)[(150 -4800)μm/m – \%M] = 0μrad/\%M

Both the ply interface positions as well as the [\overline{Q} ] matrices for each ply were calculated as a part of Example Problem 6.4. Hence, we now have all the information needed to calculate the moisture stress and moment resultants, using Equations 6.42. For example, Equation 6.42a is evaluated as follows:

N_{xx}^M\equiv \Delta M\sum\limits_{k=1}^{n}{\left\{\left[\overline{Q}_{11}\beta _{xx}+\overline{Q}_{12}\beta _{yy}+\overline{Q}_{16}\beta _{xy}\right]_k[z_k-z_{k-1}] \right\} }           (6.42a)

N_{xx}^M\equiv \Delta M\sum\limits_{k=1}^{3}{\left\{\left[\overline{Q}_{11}\beta _{xx}+\overline{Q}_{12}\beta _{yy}+\overline{Q}_{16}\beta _{xy}\right]_k[z_k-z_{k-1}] \right\} }

 

N_{xx}^M =\Delta M\left\{\left(\left[\overline{Q}_{11}\beta _{xx}+\overline{Q}_{12}\beta _{yy}+\overline{Q}_{16}\beta _{xy}\right]_1[z_1-z_{0}]\right)+\left([\overline{Q}_{11}\beta _{xx}+\overline{Q}_{12}\beta _{yy}+\overline{Q}_{16}\beta _{xy}]_2 \\ \times [z_2-z_1]+\left[\overline{Q}_{11}\beta _{xx}+\overline{Q}_{12}\beta _{yy}+\overline{Q}_{16}\alpha _{xy}\right]_3[z_3-z_2] \right) \right\}

 

N_{xx}^M = (+0.5)\left\{\left(\left[(107.6\times 10^9)(1312\times 10^{-6})+(26.06\times 10^9)(3638\times 10^{-6}) \\ +(48.13\times 10^9)(-4027\times 10^{-6})\right]\left[\left(-0.0625+0.1875\right) \times10^{-3} \right] \right)+\left(\left[(170.9\times 10^9) \\ \times (150\times 10^{-6})+(3.016\times 10^9)(4800\times 10^{-6})+(0)(0)\right]\left[(0.0625+0.0625)\times 10^{-3}\right] \right) \right\} \\ +\left(\left[(10.05 \times 10^9)(4800\times 10^{-6})+(3.016\times 10^9)(150\times 10^{-6})+(0)(0)\right] \\ \times \left[(0.1875 – 0.0625)\times 10^{-3}\right] \right)

 

N_{xx}^M=8190N/m

 

The remaining moisture stress and moment resultants are calculated in similar fashion, resulting in

\left \{ \begin{matrix}N_{xx}^M \\ N_{yy}^M \\ N_{xy}^M \\ M_{xx}^M \\ M_{yy}^M \\ M_{xy}^M \end{matrix} \right \}=\left \{ \begin{matrix}8190N/m\\ 8460N/m\\ -233N/m\\0.05N–m/m\\ -0.05N–m/m\\ 0.03N–m/m \end{matrix} \right \}

We can now calculate midplane strains and curvatures using Equation 6.45,

\left \{ \begin{matrix} \varepsilon _{xx}^o \\ \varepsilon _{yy}^o \\ \gamma _{xy}^o \\\kappa _{xx} \\ \kappa _{yy} \\ \kappa _{xy} \end{matrix} \right \}=\left [ \begin{matrix} a_{11} & a_{12} & a_{16} & b_{11} & b_{12} & b_{16} \\ a_{12} & a_{22} & a_{26} & b_{21} & b_{22} & b_{26} \\ a_{16} & a_{26} & a_{66} & b_{61} & b_{62} & b_{66} \\ b_{11} & b_{21} & b_{61} & d_{11} & d_{12} & d_{16} \\ b_{12} & b_{22} & b_{62} & d_{12} & d_{22} & d_{26} \\ b_{16} & b_{26} & b_{66} & d_{16} & d_{26} & d_{66} \end{matrix} \right ]\left \{ \begin{matrix} N_{xx} & N_{xx}^T & N_{xx}^M \\ N_{yy} &N_{yy}^T & N_{yy}^M \\ N_{xy} & N_{xy}^T & N_{xy}^M \\ M_{xx} & M_{xx}^T & M_{xx}^M \\ M_{yy} & M_{yy}^T & M_{yy}^M \\ M_{xy} & M_{xy}^T & M_{xy}^M \end{matrix} \right \}       (6.45)

which becomes*

\left \{ \begin{matrix} \varepsilon _{xx}^o \\ \varepsilon _{yy}^o \\\gamma _{xy}^o \\ \kappa _{xx} \\ \kappa _{yy} \\ \kappa _{xy} \end{matrix} \right \}=\left [ \begin{matrix} 3.757\times 10^{-8} & -1.964\times 10^{-9} &-1.038\times 10^{-8} & 1.440\times 10^{-4} & 3.905\times 10^{-6} & 8.513\times 10^{-5} \\ -1.964\times 10^{-9}& 1.037\times 10^{-7} & -4.234\times 10^{-8} &-1.866\times 10^{-6} &-6.361\times 10^{-4} & 4.628\times 10^4 \\-1.038\times 10^{-8} & -4.234\times 10^{-8} & 2.004\times 10^{-7}& 3.661\times 10^{-4} & 3.251\times 10^{-4} &-1.851\times 10^{-5} \\ 1.440\times 10^{-4} &-1.866\times 10^{-5} &3.661\times 10^{-4} & 7.064 & -3.122\times 10^{-2} & -4.572 \\ 3.905\times 10^{-6} & -6.361\times 10^{-4} &3.251\times 10^{-4} & -3.122\times 10^{-2} & 6.429 & -3.620 \\8.513\times 10^{-5} & 4.628\times 10^4 & -1.851\times 10^{-5} & -4.572 &-3.620 & 17.41 \end{matrix} \right ] \\ \left \{ \begin{matrix} -4060+8190 \\-7360+8460 \\ 2860-233\\ -0.62+0.05 \\ 0.62-0.05 \\ -0.36+0.03 \end{matrix} \right \}

 

\left ( \begin{matrix} \varepsilon _{xx}^o \\ \varepsilon _{yy}^o \\\gamma _{xy}^o \\ \kappa _{xx} \\ \kappa _{yy} \\ \kappa _{xy} \end{matrix} \right )=\left \{ \begin{matrix}18μm/m \\ -509μm/m \\ 420μrad \\ -1.0m^{-1} \\ 5.0m^{-1} \\ -4.4m^{-1} \end{matrix} \right \}

b. Ply strains relative to the x−y coordinate system: Ply strains may now be calculated using Equation 6.12.

\left \{ \begin{matrix}\varepsilon _{xx} \\ \varepsilon _{yy} \\ \gamma _{xy} \end{matrix} \right \}=\left \{ \begin{matrix}\varepsilon _{xx}^o \\ \varepsilon _{yy}^o \\ \gamma _{xy}^o \end{matrix} \right \}+z\left \{ \begin{matrix}\kappa _{xx} \\ \kappa _{yy} \\ \kappa _{xy} \end{matrix} \right \}                  (6.12)

For example, strains

present at the outer surface of ply #1 (i.e., strains present at z_o = −0.0001875 m) are

\left . \left \{ \begin{matrix}\varepsilon _{xx} \\ \varepsilon _{yy} \\ \gamma _{xy} \end{matrix} \right \}\right |_{z=z_0}=\left \{ \begin{matrix}\varepsilon _{xx}^o \\ \varepsilon _{yy}^o \\ \gamma _{xy}^o \end{matrix} \right \}+z_0\left \{ \begin{matrix}\kappa _{xx} \\ \kappa _{yy} \\ \kappa _{xy} \end{matrix} \right \}=\left \{ \begin{matrix}18\times 10^{-6}m/m \\ -509\times 10^{-6}m/m \\ 420\times 10^{-6}m/m \end{matrix} \right \}+(-0.0001875m)\left \{ \begin{matrix} -1.0rad/m \\5.0rad/m \\ -4.4rad/m \end{matrix} \right \}

 

\left . \left \{ \begin{matrix}\varepsilon _{xx} \\ \varepsilon _{yy} \\ \gamma _{xy} \end{matrix} \right \}\right |_{z=z_0}=\left \{ \begin{matrix} 206μm/m \\ -1450μm/m \\ 1240μrad \end{matrix} \right \}

Strains calculated at the remaining ply interface positions are summarized in Table 6.9.

c. Ply stresses relative to the x−y coordinate system: Ply stresses may now be calculated using Equation 5.30. The stresses present at the outer surface of ply #1 are (i.e., at z = z_0):

\begin{Bmatrix} \sigma _{xx} \\ \sigma _{yy} \\ \tau _{xy} \end{Bmatrix} = \begin{bmatrix} \overline{Q}_{11} & \overline{Q}_{12} & \overline{Q}_{16} \\ \overline{Q}_{12} & \overline{Q}_{22} & \overline{Q}_{26} \\ \overline{Q}_{16} &\overline{Q}_{26}& \overline{Q}_{66} \end{bmatrix} \begin{Bmatrix} \varepsilon _{xx}-\Delta T\sigma _{xx} – \Delta M\beta _{xx} \\ \varepsilon _{yy}-\Delta T\sigma _{yy} -\Delta M\beta _{yy} \\ \gamma _{xy}-\Delta T\sigma _{xy} -\Delta M\beta _{xy} \end{Bmatrix}                             (5.30)

\left . \left \{ \begin{matrix}\sigma _{xx} \\ \sigma _{yy} \\ \tau _{xy} \end{matrix} \right \}\right |_{z=z_0}^{ply1}=\left . \left [ \begin{matrix} \overline{Q} _{11} & \overline{Q}_{12} & \overline{Q}_{16} \\ \overline{Q}_{12} & \overline{Q}_{22} & \overline{Q}_{26} \\ \overline{Q}_{16} & \overline{Q}_{26} & \overline{Q}_{66} \end{matrix} \right ]\right |_{z=z_0}^{ply1}\left . \left \{ \begin{matrix} \varepsilon _{xx}-\Delta T\alpha _{xx}-\Delta M\beta _{xx} \\ \varepsilon _{yy}-\Delta T\alpha _{yy}-\Delta M\beta _{yy} \\ \gamma _{xy}-\Delta T\alpha _{xy}-\Delta M\beta _{xy} \end{matrix} \right \}\right |_{z=z_0}

 

\left . \left \{ \begin{matrix}\sigma _{xx} \\ \sigma _{yy} \\ \tau _{xy} \end{matrix} \right \}\right |_{z=z_0}^{ply1}=\left [ \begin{matrix}107.6\times 10^9 & 26.06\times 10^9 & 48.13\times 10^9 \\ 26.06\times 10^9 & 27.22\times 10^9 & 21.52\times 10^9 \\ 48.13\times 10^9 & 21.52\times 10^9 & 36.05\times 10^9 \end{matrix} \right ]\left \{ \begin{matrix} \left[(206)-(-155)(6.08)-(0.5)(1312)\right]\times 10^{-6} \\ \left[(-1450)-(-155)(20.0)-(0.5)(3638)\right]\times 10^{-6} \\ \left[(1240)-(-155)(-24.2)-(0.5)(-4027)\right]\times 10^{-6} \end{matrix} \right \}

TABLE 6.9
Ply Interface Strains in a [30/0/90] Graphite−Epoxy Laminate Caused by the Combined Effects of Cooldown from 175°C to 20°C and an Increase in Moisture Content of +0.5%

z-Coordinate (mm) \varepsilon _{xx} (μm/m) \varepsilon _{yy} (μm/m) \gamma  _{xy} (μ Radians)
−0.1875 206 −1450 1240
−0.0625 80 −820 690
0.0625 −44 −190 150
0.1875 −170 440 −400

Note: Strains are referenced to the x−y coordinate system.

TABLE 6.10
Ply Interface Stresses in a [30/0/90] Graphite–Epoxy Laminate Caused by the Combined Effects of Cooldown from 175°C to 20°C and an Increase in Moisture Content of +0.5%

Ply Number z-Coordinate (mm) \sigma   _{xx} (MPa) \sigma   _{yy} (MPa) \tau   _{xy} (MPa)
Ply −0.1875 25 -2.2 2.2
1 −0.0625 1.4 -0.24 -9.9
Ply −0.0625 -20 9.3 9
2 0.0625 -40 15 1.9
Ply 0.0625 16 -65 1.9
3 0.1875 17 43 -5.2

Note: Stresses are referenced to the x–y coordinate system.

\left . \left \{ \begin{matrix} \sigma _{xx} \\ \sigma _{yy} \\\tau _{xy} \end{matrix} \right \}\right |_{z=z_0}^{ply1}=\left \{ \begin{matrix} 25 MPa \\ -2.4 MPa \\ 2.2MPa \end{matrix} \right \}

Stresses calculated at the remaining plies and ply interface positions are summarized in Table 6.10.

A comparison of the results obtained in Example Problems 6.6 and 6.7 leads to the following observation: the initial ply stresses and strains caused by cooldown from cure temperatures to room temperatures are partially relieved by the subsequent adsorption of moisture. Although the interaction between temperature and moisture effects obviously depends on the details of the situation (material properties involved, stacking sequence, magnitudes of ΔT and ΔM, etc.), this observation is often true. That is, the thermal stresses predicted to develop in a multiangle laminate during cooldown are usually predicted to be relieved somewhat by subsequent adsorption of moisture.


* The [abd] matrix for a [30 /o/90]_T graphite–epoxy laminate was calculated in Sample Problem 6.3, and the thermal stress and moment resultants were calculated in Sample Problem 6.5.

Related Answered Questions