Question 14.16: A 4-module, 20° pinion with 30 teeth drives a rack. Calculat...

A 4-module, 20° pinion with 30 teeth drives a rack. Calculate the length of action and the contact ratio.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Given:  m=4 mm , \alpha=20^{\circ}, z_{1}=30 .

For a rack,    L_{p}=\left(r_{a 1}^{2}-r_{b 1}^{2}\right)^{0.5}-r_{1} \sin \alpha+\frac{h_{a}}{\sin \alpha} .

h_{a}=m=4 mm , d_{1}=m z=4 \times 30=120 mm .

r_{a 1}=r_{1}+h_{a}=60+4=64 mm .

r_{b 1}=r_{1} \cos a=60 \cos 20^{\circ}=56.38 mm .

L_{p}=\left[(64)^{2}-(56.38)^{2}\right]^{0.5}-60 \sin 20^{\circ}+\frac{4}{\sin 20^{\circ}} .

=21.461 mm .

\text { Base pitch } p_{b}=\frac{2 \pi r_{b 1}}{z_{1}}=2 \pi \times \frac{56.38}{30}=11.8082 mm .

\text { Contact ratio }=\frac{L_{p}}{p_{b}}=\frac{21.461}{11.8082}=1.8174 \simeq 2 .

Related Answered Questions