A 6.35 mm module, straight bevel pinion of 14 teeth drives a gear of 20 teeth. The shaft angle is 90°. Calculate the addendum and dedendum, circular tooth thickness for each gear, and the pitch and base radii of the equivalent spur gear.
A 6.35 mm module, straight bevel pinion of 14 teeth drives a gear of 20 teeth. The shaft angle is 90°. Calculate the addendum and dedendum, circular tooth thickness for each gear, and the pitch and base radii of the equivalent spur gear.
Given m=6.35 mm , z_{1}=14, z_{2}=20, \Sigma=90^{\circ}, h_{a}=h_{f}=? .
i=z_{2} / z_{1}=20 / 14=1.4286 .
d_{1}=m z_{1}=6.35 \times 14=88.9 mm , d_{2}=6.25 \times 20=127 mm .
L=0.5\left[d_{1}^{2}+d_{2}^{2}\right]^{0.5}=0.5\left[(88.9)^{2}+(127)^{2}\right]^{0.5}=77.51 mm .
\sin \delta_{1}=d_{1} /(2 L)=48 /(2 \times 53.66)=0.4472 .
\delta_{1}=26.56^{\circ} .
\tan \delta_{1}=\sin \Sigma /(\cos \Sigma+i) .
=\sin 90^{\circ} /\left(\cos 90^{\circ}+1.4286\right)=0.7 .
\delta_{1}=35^{\circ}, \delta_{2}=90-35=55^{\circ} .
h_{a}=m=6.35 mm . h_{f}=1.25 m =1.25 \times 6.35=7.94 mm .
\text { For a bevel gear, } z_{y}=z / \cos \delta .
z_{v 1}=z_{1} / \cos \delta_{1}=14 / \cos 35^{\circ}=17, z_{v 2}=20 / \cos 55^{\circ}=35 .
\text { For the equivalent spur gear, } d=m z_{v} \text {, The pitch diameters are: }d_{1}=6.35 \times 17=108 mm , d_{2}=6.35 \times 35=222.25 mm .
\text { Circular tooth thickness }=\pi \times 108 / 17=111.96 mm .