Question 14.37: A 6.35 mm module, straight bevel pinion of 14 teeth drives a...

A 6.35 mm module, straight bevel pinion of 14 teeth drives a gear of 20 teeth. The shaft angle is 90°. Calculate the addendum and dedendum, circular tooth thickness for each gear, and the pitch and base radii of the equivalent spur gear.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Given  m=6.35 mm , z_{1}=14, z_{2}=20, \Sigma=90^{\circ}, h_{a}=h_{f}=? .

i=z_{2} / z_{1}=20 / 14=1.4286 .

d_{1}=m z_{1}=6.35 \times 14=88.9 mm , d_{2}=6.25 \times 20=127 mm .

L=0.5\left[d_{1}^{2}+d_{2}^{2}\right]^{0.5}=0.5\left[(88.9)^{2}+(127)^{2}\right]^{0.5}=77.51 mm .

\sin \delta_{1}=d_{1} /(2 L)=48 /(2 \times 53.66)=0.4472 .

\delta_{1}=26.56^{\circ} .

\tan \delta_{1}=\sin \Sigma /(\cos \Sigma+i) .

=\sin 90^{\circ} /\left(\cos 90^{\circ}+1.4286\right)=0.7 .

\delta_{1}=35^{\circ}, \delta_{2}=90-35=55^{\circ} .

h_{a}=m=6.35 mm . h_{f}=1.25 m =1.25 \times 6.35=7.94 mm .

\text { For a bevel gear, } z_{y}=z / \cos \delta .

z_{v 1}=z_{1} / \cos \delta_{1}=14 / \cos 35^{\circ}=17, z_{v 2}=20 / \cos 55^{\circ}=35 .

\text { For the equivalent spur gear, } d=m z_{v} \text {, The pitch diameters are: }

d_{1}=6.35 \times 17=108 mm , d_{2}=6.35 \times 35=222.25 mm .

\text { Circular tooth thickness }=\pi \times 108 / 17=111.96 mm .

Related Answered Questions