Question 3.55: (a) A long metal pipe of square cross-section (side a) is gr...

(a)  A long metal pipe of square cross-section (side a) is grounded on three sides, while the fourth (which is insulated from the rest) is maintained at constant potential V_{0}. Find the net charge per unit length on the side opposite to V_{0}. [Hint: Use your answer to Prob. 3.15 or Prob. 3.54.]

(b)  A long metal pipe of circular cross-section (radius R) is divided (lengthwise) into four equal sections, three of them grounded and the fourth maintained at constant potential V_{0}. Find the net charge per unit length on the section opposite to V_{0} .\left[\text { Answer to both }(a) \text { and }(b): \lambda=-\left(\epsilon_{0} V_{0} / \pi\right) \ln 2\right]^{27} .

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) Using Prob. 3.15b (with b = a):

V(x, y)=\frac{4 V_{0}}{\pi} \sum_{n \text { odd }} \frac{\sinh (n \pi x / a) \sin (n \pi y / a)}{n \sinh (n \pi)} .

\sigma(y)=-\left.\epsilon_{0} \frac{\partial V}{\partial x}\right|_{x=0}=-\left.\epsilon_{0} \frac{4 V_{0}}{\pi} \sum_{n \text { odd }}\left(\frac{n \pi}{a}\right) \frac{\cosh (n \pi x / a) \sin (n \pi y / a)}{n \sinh (n \pi)}\right|_{x=0}

 

=-\frac{4 \epsilon_{0} V_{0}}{a} \sum_{n \text { odd }} \frac{\sin (n \pi y / a)}{\sinh (n \pi)} .

\lambda=\int_{0}^{a} \sigma(y) d y=-\frac{4 \epsilon_{0} V_{0}}{a} \sum_{n \text { odd }} \frac{1}{\sinh (n \pi)} \int_{0}^{a} \sin (n \pi y / a) d y .

But \int_{0}^{a} \sin (n \pi y / a) d y=-\left.\frac{a}{n \pi} \cos (n \pi y / a)\right|_{0} ^{a}=\frac{a}{n \pi}[1-\cos (n \pi)]=\frac{2 a}{n \pi}(\text { since } n \text { is odd }) .

=-\frac{8 \epsilon_{0} V_{0}}{\pi} \sum_{n \text { odd }} \frac{1}{n \sinh (n \pi)}=-\frac{\epsilon_{0} V_{0}}{\pi} \ln 2 .

[Summing the series numerically (using Mathematica) gives 0.0866434, which agrees precisely with ln 2/8. The series can be summed analytically, by manipulation of elliptic integrals—see “Integrals and Series, Vol. I: Elementary Functions,” by A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev (Gordon and Breach, New York, 1986), p. 721. I thank Ram Valluri for calling this to my attention.]

Using Prob. 3.54 (with b = a/2):

V(x, y)=V_{0}\left[\frac{y}{a}+\frac{2}{\pi} \sum_{n} \frac{(-1)^{n} \cosh (n \pi x / a) \sin (n \pi y / a)}{n \cosh (n \pi / 2)}\right] .

\sigma(x)=-\left.\epsilon_{0} \frac{\partial V}{\partial y}\right|_{y=0}=-\left.\epsilon_{0} V_{0}\left[\frac{1}{a}+\frac{2}{\pi} \sum_{n}\left(\frac{n \pi}{a}\right) \frac{(-1)^{n} \cosh (n \pi x / a) \cos (n \pi y / a)}{n \cosh (n \pi / 2)}\right]\right|_{y=0}

 

=-\epsilon_{0} V_{0}\left[\frac{1}{a}+\frac{2}{a} \sum_{n} \frac{(-1)^{n} \cosh (n \pi x / a)}{\cosh (n \pi / 2)}\right]=-\frac{\epsilon_{0} V_{0}}{a}\left[1+2 \sum_{n} \frac{(-1)^{n} \cosh (n \pi x / a)}{\cosh (n \pi / 2)}\right] .

\lambda=\int_{-a / 2}^{a / 2} \sigma(x) d x=-\frac{\epsilon_{0} V_{0}}{a}\left[a+2 \sum_{n} \frac{(-1)^{n}}{\cosh (n \pi / 2)} \int_{-a / 2}^{a / 2} \cosh (n \pi x / a) d x\right] .

But  \int_{-a / 2}^{a / 2} \cosh (n \pi x / a) d x=\left.\frac{a}{n \pi} \sinh (n \pi x / a)\right|_{-a / 2} ^{a / 2}=\frac{2 a}{n \pi} \sinh (n \pi / 2) .

=-\frac{\epsilon_{0} V_{0}}{a}\left[a+\frac{4 a}{\pi} \sum_{n} \frac{(-1)^{n} \tanh (n \pi / 2)}{n}\right]=-\epsilon_{0} V_{0}\left[1+\frac{4}{\pi} \sum_{n} \frac{(-1)^{n} \tanh (n \pi / 2)}{n}\right]

 

=-\frac{\epsilon_{0} V_{0}}{\pi} \ln 2

[The numerical value is -0.612111, which agrees with the expected value  (\ln 2-\pi) / 4 .]

(b) From Prob. 3.24:

V(s, \phi)=a_{0}+b_{0} \ln s+\sum_{k=1}^{\infty}\left(a_{k} s^{k}+b_{k} \frac{1}{s^{k}}\right)\left[c_{k} \cos (k \phi)+d_{k} \sin (k \phi)\right].

In the interior (s < R) b0 and bk must be zero (ln s and 1/s blow up at the origin). Symmetry \Rightarrow d_{k}=0 . So 

V(s, \phi)=a_{0}+\sum_{k=1}^{\infty} a_{k} s^{k} \cos (k \phi) .

At the surface:

V(R, \phi)=\sum_{k=0} a_{k} R^{k} \cos (k \phi)=\left\{\begin{array}{l}V_{0}, \text { if }-\pi / 4<\phi<\pi / 4 \\0, \text{otherwise }\end{array}\right.

Fourier’s trick: multiply by \cos \left(k^{\prime} \phi\right) \text { and integrate from }-\pi \text { to } \pi :

\sum_{k=0}^{\infty} a_{k} R^{k} \int_{-\pi}^{\pi} \cos (k \phi) \cos \left(k^{\prime} \phi\right) d \phi=V_{0} \int_{-\pi / 4}^{\pi / 4} \cos \left(k^{\prime} \phi\right) d \phi=\left\{\begin{array}{l}V_{0} \sin \left(k^{\prime} \phi\right) /\left.k^{\prime}\right|_{-\pi / 4} ^{\pi / 4}=\left(V_{0} / k^{\prime}\right) \sin \left(k^{\prime} \pi / 4\right), \text { if } k^{\prime} \neq 0 ,\\V_{0} \pi / 2, \text { if } k^{\prime}=0 .\end{array}\right.

But

\int_{-\pi}^{\pi} \cos (k \phi) \cos \left(k^{\prime} \phi\right) d \phi= \begin{cases}0, & \text { if } k \neq k^{\prime} \\ 2 \pi, & \text { if } k=k^{\prime}=0 , \\ \pi, & \text { if } k=k^{\prime} \neq 0.\end{cases}

So  2 \pi a_{0}=V_{0} \pi / 2 \Rightarrow a_{0}=V_{0} / 4 ; \pi a_{k} R^{k}=\left(2 V_{0} / k\right) \sin (k \pi / 4) \Rightarrow a_{k}=\left(2 V_{0} / \pi k R^{k}\right) \sin (k \pi / 4)(k \neq 0) ; hence

V(s, \phi)=V_{0}\left[\frac{1}{4}+\frac{2}{\pi} \sum_{k=1}^{\infty} \frac{\sin (k \pi / 4)}{k}\left(\frac{s}{R}\right)^{k} \cos (k \phi)\right] .

Using Eq. 2.49, and noting that in this case \hat{ n }=-\hat{ s }

\sigma=-\epsilon_{0} \frac{\partial V}{\partial n}                (2.49)

\sigma(\phi)=\left.\epsilon_{0} \frac{\partial V}{\partial s}\right|_{s=R}=\left.\epsilon_{0} V_{0} \frac{2}{\pi} \sum_{k=1}^{\infty} \frac{\sin (k \pi / 4)}{k R^{k}} k s^{k-1} \cos (k \phi)\right|_{s=R}=\frac{2 \epsilon_{0} V_{0}}{\pi R} \sum_{k=1}^{\infty} \sin (k \pi / 4) \cos (k \phi) .

We want the net (line) charge on the segment opposite to  V_{0}(-\pi<\phi<-3 \pi / 4 \text { and } 3 \pi / 4<\phi<\pi) :

\lambda=\int \sigma(\phi) R d \phi=2 R \int_{3 \pi / 4}^{\pi} \sigma(\phi) d \phi=\frac{4 \epsilon_{0} V_{0}}{\pi}\sum_{k=1}^{\infty} \sin (k \pi / 4) \int_{3 \pi / 4}^{\pi} \cos (k \phi) d \phi

 

=\frac{4 \epsilon_{0} V_{0}}{\pi} \sum_{k=1}^{\infty} \sin (k \pi / 4)\left[\left.\frac{\sin (k \phi)}{k}\right|_{3 \pi / 4} ^{\pi}\right]=-\frac{4 \epsilon_{0} V_{0}}{\pi} \sum_{k=1}^{\infty} \frac{\sin (k \pi / 4) \sin (3 k \pi / 4)}{k} .

k \sin (k \pi / 4) \sin (3 k \pi / 4) product
1 1 / \sqrt{2} 1 / \sqrt{2} 1/2
2 1 -1 -1
3 1 / \sqrt{2} 1 / \sqrt{2} 1/2
4 0 0 0
5 -1 / \sqrt{2} -1 / \sqrt{2} 1/2
6 -1 1 -1
7 -1 / \sqrt{2} -1 / \sqrt{2} 1/2
8 0 0 0

\lambda=-\frac{4 \epsilon_{0} V_{0}}{\pi}\left[\frac{1}{2} \sum_{1,3,5 \ldots} \frac{1}{k}-\sum_{2,6,10, \ldots} \frac{1}{k}\right]=-\frac{4 \epsilon_{0} V_{0}}{\pi}\left[\frac{1}{2} \sum_{1,3,5 \ldots} \frac{1}{k}-\frac{1}{2} \sum_{1,3,5, \ldots} \frac{1}{k}\right]=0 .

Ouch! What went wrong? The problem is that the series \sum(1 / k) is divergent, so the “subtraction” \infty-\infty is suspect. One way to avoid this is to go back to V(s, \phi) , calculate  \epsilon_{0}(\partial V / \partial s) \text { at } s \neq R , and save the limit R until the end:

\sigma(\phi, s) \equiv \epsilon_{0} \frac{\partial V}{\partial s}=\frac{2 \epsilon_{0} V_{0}}{\pi} \sum_{k=1}^{\infty} \frac{\sin (k \pi / 4)}{k} \frac{k s^{k-1}}{R^{k}} \cos (k \phi)

 

=\frac{2 \epsilon_{0} V_{0}}{\pi R} \sum_{k=1}^{\infty} x^{k-1} \sin (k \pi / 4) \cos (k \phi) \quad \text { (where } x \equiv s / R \rightarrow 1 at the end).

 

\lambda(x) \equiv \sigma(\phi, s) R d \phi=-\frac{4 \epsilon_{0} V_{0}}{\pi} \sum_{k=1}^{\infty} \frac{1}{k} x^{k-1} \sin (k \pi / 4) \sin (3 k \pi / 4)

 

=-\frac{4 \epsilon_{0} V_{0}}{\pi}\left[\frac{1}{2 x}\left(x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\cdots\right)-\frac{1}{x}\left(\frac{x^{2}}{2}+\frac{x^{6}}{6}+\frac{x^{10}}{10}+\cdots\right)\right]

 

=-\frac{2 \epsilon_{0} V_{0}}{\pi x}\left[\left(x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\cdots\right)-\left(x^{2}+\frac{x^{6}}{3}+\frac{x^{10}}{5}+\cdots\right)\right] .

But (see math tables) : \ln \left(\frac{1+x}{1-x}\right)=2\left(x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\cdots\right) .

 

=-\frac{2 \epsilon_{0} V_{0}}{\pi x}\left[\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right)-\frac{1}{2} \ln \left(\frac{1+x^{2}}{1-x^{2}}\right)\right]=-\frac{\epsilon_{0} V_{0}}{\pi x} \ln \left[\left(\frac{1+x}{1-x}\right)\left(\frac{1+x^{2}}{1-x^{2}}\right)\right]

 

=-\frac{\epsilon_{0} V_{0}}{\pi x} \ln \left[\frac{(1+x)^{2}}{1+x^{2}}\right] ; \quad \lambda=\lim _{x \rightarrow 1} \lambda(x)=\frac{-\epsilon_{0} V_{0}}{\pi} \ln 2 .

3.55

Related Answered Questions