Question 15.14: A ball bearing is subjected to a radial force which varies i...

A ball bearing is subjected to a radial force which varies in sinusoidal way as shown in Fig.15.14 and discussed in Ex. 15.13. The direction of force remains fixed. The amplitude of the force is 1500 N and the speed of rotation is 720 rpm. Determine the dynamic load capacity of the bearing for the expected life of 8000 h.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

\text { Given } P_{\max }=1500 N \quad n=720 rpm .

L_{10 h }=8000 h .

Step I Equivalent load for complete work cycle
As derived in the previous example, the equation for force P at angle of rotation θ is given by,

P=\frac{1}{2} P_{\max }(1-\cos \theta) .

\text { Considering the work cycle from } \theta=0 \text { to } \theta=2 \pi

and applying Eq. (15.15),

P_{e}=\left[\frac{1}{N} \int P^{3} d N\right]^{1 / 3}             (15.15).

P_{e}=\left[\frac{1}{N} \int P^{3} d N\right]^{1 / 3} .

=\left[\frac{1}{2 \pi} \int \frac{P_{\max }^{3}}{8}(1-\cos \theta)^{3} d \theta\right]^{1 / 3} .

=\frac{P_{\max .}}{2}\left[\frac{1}{2 \pi} \int(1-\cos \theta)^{3} d \theta\right]^{1 / 3}                 (a).

\text { Also, } \int(1-\cos \theta)^{3} d \theta=\int\left(1-3 \cos \theta+3 \cos ^{2} \theta-\cos ^{3} \theta\right) d \theta .

=\int\left[1-3 \cos \theta+\frac{3(1+\cos 2 \theta)}{2}-\cos \theta\left(1-\sin ^{2} \theta\right)\right] d \theta .

=\int\left(2.5-4 \cos \theta+1.5 \cos 2 \theta+\cos \theta \sin ^{2} \theta\right) d \theta .

=\left[2.5 \theta-4 \sin \theta+0.75 \sin 2 \theta+\frac{\sin ^{3} \theta}{3}\right]               (b).

The following formulae are used in above derivation:

\int \cos \theta d \theta=\sin \theta \quad \int \cos 2 \theta d \theta=\frac{\sin 2 \theta}{2} .

\int \cos \theta \sin ^{2} \theta=\frac{\sin ^{3} \theta}{3} .

Since

\int_{0}^{2 \pi}(1-\cos \theta)^{3} d \theta=\int_{0}^{\pi}(1-\cos \theta)^{3} d \theta

+\int_{\pi}^{2 \pi}(1-\cos \theta)^{3} d \theta .

=\left[2.5 \theta-4 \sin \theta+0.75 \sin 2 \theta+\frac{\sin ^{3} \theta}{3}\right]_{0}^{\pi}

+\left[2.5 \theta-4 \sin \theta+0.75 \sin 2 \theta+\frac{\sin ^{3} \theta}{3}\right]_{\pi}^{2 \pi} .

=[2.5 \pi-0]+[2.5(2 \pi-\pi)]=5 \pi .

\therefore \quad \int_{0}^{2 \pi}(1-\cos \theta)^{3} d \theta=5 \pi             ( c).

from (a) and (c),

P_{e}=\frac{P_{\max }(2.5)^{1 / 3}}{2}=\frac{1500(2.5)^{1 / 3}}{2}=1017.9 N .

Step II Dynamic load carrying capacity of bearing

L_{10}=\frac{60 n L_{10 h }}{10^{6}}=\frac{60(720)(8000)}{10^{6}} .

=345.6 \text { million rev. }

From Eq. (15.7),

C=P_{e}\left(L_{10}\right)^{1 / 3}                   (15.7).

C=P_{e}\left(L_{10}\right)^{1 / 3}=1017.9(345.6)^{1 / 3} .

= 7143.26 N.

Related Answered Questions