Question : A beam AB of mass m and of uniform cross section ...

A beam AB of mass m and of uniform cross section is suspended from two springs as shown. If spring 2 breaks, determine at that instant (a) the angular acceleration of the bar, (b) the acceleration of Point A, (c) the acceleration of Point B.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Statics:{ T }_{ 1 }={ T }_{ 2 }=\frac { 1 }{ 2 } W=\frac { 1 }{ 2 } mg

(a) Angular acceleration: +\curvearrowright \sum { { M }_{ G } } =\sum { { \left( { M }_{ G } \right) }_{ eff } } :T\left( \frac { L }{ 2 } \right) =\overline { I } \alpha

\\ \frac { 1 }{ 2 } mg\left( \frac { L }{ 2 } \right) =\frac { 1 }{ 12 } m{ L }^{ 2 }\alpha \\ \frac { 1 }{ 2 } mg\left( \frac { L }{ 2 } \right) =\frac { 1 }{ 12 } m{ L }^{ 2 }\alpha \\ \alpha =\frac { 3g }{ L } \quad \quad ,\alpha =\frac { 3g }{ L } \curvearrowright +\downarrow \sum { { F }_{ y } } =\sum { { \left( { F }_{ Y } \right) }_{ eff } } :W-{ T }_{ 1 }=m\overline { a } \\ mg-\frac { 1 }{ 2 } mg=m\overline { a } \\ \overline { a } =\frac { 1 }{ 2 } g\quad \quad \overline { a } =\frac { 1 }{ 2 } g\downarrow

(b) Acceleration of A: { a }_{ A }={ a }_{ G }+{ a }_{ A/G }

\\ +\downarrow { a }_{ A }=\frac { 1 }{ 2 } g-\frac { L }{ 2 } \alpha \\ =\frac { 1 }{ 2 } g-\frac { L }{ 2 } \left( \frac { 3g }{ L } \right) \\ { a }_{ A }=-g\quad ,{ a }_{ A }=g\uparrow

(c) Acceleration of B: { a }_{ B }={ a }_{ G }+{ a }_{ B/G }

\\ +\downarrow { a }_{ B }=\overline { a } +\frac { 1 }{ 2 } \alpha =\frac { 1 }{ 2 } g+\frac { L }{ 2 } \left( \frac { 3g }{ L } \right) =+2g\\ \\ \quad { a }_{ B }=2g\downarrow
Screenshot_2020-10-20 Vector Mechanics for Engineers Dynamics - Solution Manual by Ferdinand Beer, Jr , E Russell Johnston,[...](12)
Screenshot_2020-10-20 Vector Mechanics for Engineers Dynamics - Solution Manual by Ferdinand Beer, Jr , E Russell Johnston,[...](13)