Question 3.14:  A beam carrying a uniform load is simply supported with the...

A beam carrying a uniform load is simply supported with the supports set back a distance  a from the ends as shown in the figure. The bending moment at  x can be found from summing moments to zero at section  x :

\sum M=M+\frac{1}{2} w(a+x)^{2}-\frac{1}{2} w l x=0

 

or

M=\frac{w}{2}\left[l x-(a+x)^{2}\right]

 

where  w is the loading intensity in  \mathrm{lbf} / \mathrm{in} . The designer wishes to minimize the necessary weight of the supporting beam by choosing a setback resulting in the smallest possible maximum bending stress

(a) If the beam is configured with  a=2.25 in,  l=10 in, and  w=100 \mathrm{lbf} / in, find the magnitude of the severest bending moment in the beam.

(  b ) Since the configuration in part (  a ) is not optimal, find the optimal setback  a that will result in the lightest-weight beam.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) Moment at center,

\begin{aligned}&x_{c}=\frac{(l-2 a)}{2} \\&M_{c}=\frac{w}{2}\left[\frac{l}{2}(l-2 a)-\left(\frac{l}{2}\right)^{2}\right]=\frac{w l}{2}\left(\frac{l}{4}-a\right)\end{aligned}

 

At reaction,  \left|M_{r}\right|=w \mathrm{a}^{2} / 2

 

a=2.25, l=10 \mathrm{in}, w=100 \mathrm{lbf} / \mathrm{in}

 

\begin{aligned}&M_{c}=\frac{100(10)}{2}\left(\frac{10}{4}-2.25\right)=125 \mathrm{lbf} \cdot \mathrm{in} \\&\left|M_{r}\right|=\frac{100\left(2.25^{2}\right)}{2}=253 \mathrm{lbf} \cdot \mathrm{in} \quad \text {   }\end{aligned}

 

(b) Optimal occurs when  M_{c}=\left|M_{r}\right|\\

 

\frac{w l}{2}\left(\frac{l}{4}-a\right)=\frac{w a^{2}}{2} \Rightarrow a^{2}+a l-0.25 l^{2}=0

 

Taking the positive root

a=\frac{1}{2}\left[-l+\sqrt{l^{2}+4\left(0.25 l^{2}\right)}\right]=\frac{l}{2}(\sqrt{2}-1)=0.207 l

 

for  l=10 \mathrm{in}, w=100 \mathrm{lbf}, a=0.207(10)=2.07 \mathrm{in}

M_{\min }=(100 / 2) 2 \cdot 07^{2}=214 \mathrm{lbf} \cdot \mathrm{in}

Related Answered Questions