Question 3.5: A beam having a T section with the dimensions shown in Fig. ...

A beam having a T section with the dimensions shown in Fig. 3–15 is subjected to a bending moment of 1600 N · m that causes tension at the top surface. Locate the neutral axis and find the maximum tensile and compressive bending stresses.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The area of the composite section is  A = 1956 mm^{2}. Now divide the T section into two rectangles, numbered 1 and 2, and sum the moments of these areas about the top edge. We then have

1956c_{1} = 12(75)(6) + 12(88)(56)

and hence c_{1} = 32.99 mm. Therefore c_{2}= 100 − 32.99 = 67.01 mm.
Next we calculate the second moment of area of each rectangle about its own centroidal axis. Using Table A-18, we find for the top rectangle

Table A–18
Geometric Properties (Continued)

Part 1 Properties of Sections
A = area
G = location of centroid
I_{x} =\int {y^{2} dA }= second moment of area about x axis
I_{y} =\int {x^{2} dA } second moment of area about y axis
I_{xy} =\int {xy d A} = mixed moment of area about x and y axes
J_{G} =\int {r^{2} d A} =\int{(x^{2}+ y^{2}) d A} = I_{x} + I_{y}= second polar moment of area about axis through G
k^{2}_{x} = I_{x} /A = squared radius of gyration about x axis
Rectangle

A = bh   I_{x} =\frac {bh^{3}}{12}  I_{y} =\frac {b^{3}h}{12} I_{xy} = 0

Circle

A =\frac {πD^{2}}{4}  I_{x} = I_{y} =\frac {πD^{4}}{64}  I_{xy}= 0   J_{G} =\frac {πD^{4}}{32}

circle

A =\frac {π}{4}(D^{2} − d^{2})   I_{x} = I_{y} =\frac {π}{64} (D^{4} − d^{4})   I_{xy} = 0   J_{G} =\frac {π}{32} (D^{4} − d^{4})

Right triangles

A =\frac {bh}{2}  I_{x} =\frac {bh^{3}}{36}  I_{y} =\frac {b^{3}h}{36}  I_{xy} = \frac {−b^{2}h^{2}}{72}

Right triangles

A =\frac {bh}{2}  I_{x} =\frac {bh^{3}}{36}  I_{y} =\frac {b^{3}h}{36}  I_{xy} = \frac {−b^{2}h^{2}}{72}

Quarter-circles

A =\frac {πr^{2}}{4}  I_{x} = I_{y} = r^{4}(\frac {π}{16} −\frac {4}{9π})  I_{xy} = r^{4} (\frac {1}{8} −\frac {4}{9π})

Quarter-circles

A =\frac {πr^{2}}{4}  I_{x} = I_{y} = r^{4}(\frac {π}{16} −\frac {4}{9π})  I_{xy} = r^{4} (\frac {4}{9π} −\frac {1}{8})

Part 2 Properties of Solids ( Density, Weight per Unit Volume)
Rods

m =\frac {πd^{2}lρ}{4g}  I_{y} = I_{z} =\frac {ml^{2}}{12}

Round disks

m =\frac {πd^{2}tρ}{4g}  I_{x} =\frac {md^{2}}{8}  I_{y} = I_{z} =\frac {md^{2}}{16}

Rectangular prisms

m =\frac {abcρ}{g}  I_{x} =\frac {m}{12}(a^{2} + b^{2})   I_{y} =\frac {m}{12}(a^{2} + c^{2})   I_{z} =\frac {m}{12}(b^{2} + c^{2})

Cylinders

m =\frac {πd^{2}lρ}{4g}  I_{x} =\frac {md^{2}}{8}  I_{y} = I_{z} =\frac {m}{48}(3d^{2} + 4l^{2})

Hollow cylinders

m =\frac {π(d^{2}_{o} − d^{2}_{i})lρ}{4g}  I_{x} =\frac {m}{8}(d^{2}_{o} +d^{2}_{i})  I_{y} = I_{z} =\frac {m}{48}(3d^{2}_{o} + 3d^{2}_{i} + 4l^{2})

 

I_{1} =\frac {1}{12}bh^{3} =\frac {1}{12}(75)12^{3} = 1.080 × 10^{4} mm^{4}

For the bottom rectangle, we have

I_{2} =\frac {1}{12}(12)88^{3} = 6.815 × 10^{5} mm^{4}

We now employ the parallel-axis theorem to obtain the second momen  of area of the composite figure about its own centroidal axis. This theorem states

I_{z} = I_{cg} + Ad^{2}

where I_{cg} is the second moment of area about its own centroidal axis and I_{z} is the second moment of area about any parallel axis a distance d removed. For the top rectangle, the distance is

d_{1} = 32.99 − 6 = 26.99 mm

and for the bottom rectangle,

d_{2}= 67.01 − 44 = 23.01 mm

Using the parallel-axis theorem for both rectangles, we now find that

I = [1.080 × 10^{4} + 12(75)26.99^{2}] + [6.815 × 10^{5} + 12(88)23.01^{2}]
= 1.907 × 106 mm^{4}

Finally, the maximum tensile stress, which occurs at the top surface, is found to be

σ =\frac {Mc_{1}}{I}=\frac {1600(32.99)10^{−3}}{1.907(10^{−6})} = 27.68(10^{6}) Pa = 27.68 MPa

Similarly, the maximum compressive stress at the lower surface is found to be

σ =-\frac {Mc_{2}}{I}=−\frac {1600(67.01)10^{−3}}{1.907(10^{−6})}

= −56.22( 10^{6} ) Pa = −56.22 MPa

3.15

Related Answered Questions