Question 24.10: A beam of circular cross-section is subjected to pure bendin...

A beam of circular cross-section is subjected to pure bending moment M and the bending stresses are given by the following equation:

\sigma=\frac{32 M_{b}}{\pi d^{3}}

where d is the diameter of the beam. It has been observed that the diameter (d) of the beam is a normally distributed random variable with a mean of 50 mm and a standard deviation of 0.125
mm. The bending moment \left(M_{b}\right) is also a normally distributed random variable with a mean of 1750 N-m and a standard deviation of 150 N-m.
Determine the mean and standard deviation of the corresponding bending stress variable (σ).
Comment on the analysis.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

\text { Given } \mu_{d}=50 mm \quad \hat{\sigma}_{d}=0.125 mm .

\mu_{M}=1750 \times 10^{3} N – mm \quad \hat{\sigma}_{M}=150 \times 10^{3} N – mm .

Step I Population of diameter (d)
d denotes the population of diameters. For this population

\mu_{d}=50 mm \quad \text { and } \quad \hat{\sigma}_{d}=0.125 mm .

Step II Population of bending moment (M)
M denotes the population of values of bending moment. For this population,

\mu_{M}=1750 \times 10^{3} N – mm .

\text { and } \hat{\sigma}_{M}=150 \times 10^{3} N – mm .

\text { Step III Population of }\left(\pi d^{3} / 32\right)( Z )

Z denotes a third population. It is obtained by using the expression,

Z=\frac{\pi}{32} d^{3} .

In the above expression (π/32) is constant and using the equations in Table 24.7

Table 24.7 Mean and standard deviations of the function Z

\text { Standard deviation } \hat{\sigma}_{Z} \text { Mean } \mu_{Z} Function
0 a Z = a
a \hat{\sigma}_{X} a \mu_{X} Z = aX
\hat{\sigma}_{X} \mu_{X} \pm a Z = X ± a
\sqrt{\left(\hat{\sigma}_{X}\right)^{2}+\left(\hat{\sigma}_{Y}\right)^{2}} \mu_{X} \pm \mu_{Y} Z = X ± Y
\sqrt{\mu_{X}^{2}\left(\hat{\sigma}_{Y}\right)^{2}+\mu_{Y}^{2}\left(\hat{\sigma}_{X}\right)^{2}+\left(\hat{\sigma}_{X}\right)^{2}\left(\hat{\sigma}_{Y}\right)^{2}} \mu_{X} \mu_{Y} Z = X Y
\frac{1}{\mu_{Y}}\left[\frac{\mu_{X}^{2}\left(\hat{\sigma}_{Y}\right)^{2}+\mu_{Y}^{2}\left(\hat{\sigma}_{X}\right)^{2}}{\mu_{Y}^{2}+\left(\hat{\sigma}_{Y}\right)^{2}}\right]^{1 / 2} \mu_{X} / \mu_{Y} Z = X/Y
\frac{1}{2}\left(\frac{\hat{\sigma}_{X}}{\mu_{X}}\right)\left[4 \mu_{X}^{2}+\left(\hat{\sigma}_{X}\right)^{2}\right] \mu_{x}^{2}+\hat{\sigma}_{x}^{2} Z = X²
3 \mu_{X}^{2}\left(\hat{\sigma}_{X}\right)+3\left(\hat{\sigma}_{X}\right)^{3} \mu_{X}^{3}+3 \mu_{X}\left(\hat{\sigma}_{X}\right)^{2} Z = X³
\frac{\hat{\sigma}_{X}}{\mu_{X}^{2}}\left[1+\left(\frac{\hat{\sigma}_{X}}{\mu_{X}}\right)^{2}\right] \frac{1}{\mu_{X}}\left[1+\left(\frac{\hat{\sigma}_{X}}{\mu_{X}}\right)^{2}\right] Z = 1/X

\mu_{Z}=\frac{\pi}{32}\left[\mu_{d}^{3}+3 \mu_{d}\left(\hat{\sigma}_{d}\right)^{2}\right] .

=\frac{\pi}{32}\left[50^{3}+3(50)(0.125)^{2}\right] .

= 12 272.08 mm³.

\hat{\sigma}_{Z}=\frac{\pi}{32}\left[3 \mu_{d}^{2} \hat{\sigma}_{d}+3\left(\hat{\sigma}_{d}\right)^{3}\right] .

=\frac{\pi}{32}\left[3(50)^{2}(0.125)+3(0.125)^{3}\right] .

= 92.04 mm³.

Step IV Population of bending stress (σ)
A fourth population of bending stress is denoted by σ. It is obtained by dividing the population of values of bending moment M by the population Z.
From Table 24.7,

\mu_{\sigma}=\frac{\mu_{M}}{\mu_{Z}}=\frac{1750 \times 10^{3}}{12272.08}=142.6 N / mm ^{2} .

\hat{\sigma}_{\sigma}=\frac{1}{\mu_{Z}}\left[\frac{\mu_{M}^{2} \hat{\sigma}_{Z}^{2}+\mu_{Z}^{2} \hat{\sigma}_{M}^{2}}{\mu_{Z}^{2}+\hat{\sigma}_{Z}^{2}}\right]^{1 / 2} .

=\frac{1}{12272.08}\left[\frac{\left(1750 \times 10^{3}\right)^{2} \times(92.04)^{2}+(12272.08)^{2} \times\left(150 \times 10^{3}\right)^{2}}{(12272.08)^{2}+(92.04)^{2}}\right]^{1 / 2} .

\hat{\sigma}_{\sigma}=12.27 N / mm ^{3} .

Step V Comments on analysis
The bending stress population has a mean of 142.6 N/mm² and standard deviation of 12.27 N/mm².
We can predict the mean and standard deviation of this population. However, the population is not a normally distributed random variable.

Related Answered Questions