\text { Given } P=4500 N \quad \sigma_{\max .}=1375 \times 10^{5} N / m ^{2} .
Step I Thickness of washer
When the spring is compressed completely flat,
\delta=h .
From Eqs (10.44), (10.45) and (10.46),
M=\frac{6}{\pi \log _{e}\left(d_{o} / d_{i}\right)}\left[\frac{\left(d_{o} / d_{i}\right)-1}{\left(d_{o} / d_{i}\right)}\right]^{2} (10.44)
C_{1}=\frac{6}{\pi \log _{e}\left(d_{o} / d_{i}\right)}\left[\frac{\left(d_{o} / d_{i}\right)-1}{\log _{e}\left(d_{o} / d_{i}\right)}-1\right] (10.45)
C_{2}=\frac{6}{\pi \log _{e}\left(d_{o} / d_{i}\right)}\left[\frac{\left(d_{o} / d_{i}\right)-1}{2}\right] (10.46).
M=\frac{6}{\pi \log _{e}\left(d_{o} / d_{i}\right)}\left[\frac{\left(d_{o} / d_{i}\right)-1}{\left(d_{o} / d_{i}\right)}\right]^{2} .
=\frac{6}{\pi \log _{e}(1.75)}\left[\frac{1.75-1}{1.75}\right]^{2}=0.6268 .
C_{1}=\frac{6}{\pi \log _{e}\left(d_{o} / d_{i}\right)}\left[\frac{\left(d_{o} / d_{i}\right)-1}{\log _{e}\left(d_{o} / d_{i}\right)}-1\right] .
=\frac{6}{\pi \log _{e}(1.75)}\left[\frac{1.75-1}{\log _{e}(1.75)}-1\right]=1.161 .
=\frac{6}{\pi \log _{e}(1.75)}\left[\frac{1.75-1}{\log _{e}(1.75)}-1\right]=1.161 .
C_{2}=\frac{6}{\pi \log _{e}\left(d_{o} / d_{i}\right)}\left[\frac{\left(d_{o} / d_{i}\right)-1}{2}\right] .
=\frac{6}{\pi \log _{e}(1.75)}\left[\frac{1.75-1}{2}\right]=1.28 .
Dividing Eq. (10.42) by Eq. (10.43)
P=\frac{E \delta}{\left(1-\mu^{2}\right) M\left(d_{o} / 2\right)^{2}}\left[(h-\delta / 2)(h-\delta) t+t^{3}\right] (10.42).
\sigma=\frac{E \delta}{\left(1-\mu^{2}\right) M\left(d_{o} / 2\right)^{2}}\left[C_{1}(h-\delta / 2)+C_{2} t\right] (10.43).
\frac{P}{\sigma}=\frac{(h-\delta / 2)(h-\delta) t+t^{3}}{C_{1}(h-\delta / 2)+C_{2} t}=\frac{t^{3}}{C_{1}(h-\delta / 2)+C_{2} t} .
\text { because }(h=\delta) .
Substituting values,
\frac{4500}{1375\left(10^{6}\right)}=\frac{t^{3}}{(1.161)(1.5 t-1.5 t / 2)+(1.28) t}=\frac{t^{2}}{2.15} .
t=2.653\left(10^{-3}\right) m =2.653 mm =2.65 mm (i).
Step II Free height of washer minus thickness (h)
h = 1.5 t = 1.5 (2.65) = 3.98 mm = 4 mm (ii)
Step III Outer diameter of washer
From Eq. (10.42),
P=\frac{E \delta}{\left(1-\mu^{2}\right) M\left(d_{o} / 2\right)^{2}}\left[(h-\delta / 2)(h-\delta) t+t^{3}\right] (10.42).
P=\frac{E \delta}{\left(1-\mu^{2}\right) M\left(d_{o} / 2\right)^{2}}\left[(h-\delta / 2)(h-\delta) t+t^{3}\right] .
\text { or } P=\frac{E \delta}{\left(1-\mu^{2}\right) M\left(d_{o} / 2\right)^{2}}\left[t^{3}\right] \quad \text { because }(h=\delta) .
E=207000 N / mm ^{2}=\left(207000 \times 10^{6}\right) N / m ^{2} .
μ = 0.3.
t=\left(2.65 \times 10^{-3}\right) m \quad h=\delta=\left(4 \times 10^{-3}\right)=0.004 m .
Substituting these values,
\text { or } 4500=\frac{\left(207000 \times 10^{6}\right)(0.004)}{\left(1-0.3^{2}\right)(0.6268)\left(d_{o} / 2\right)^{2}}\left[\left(2.65 \times 10^{-3}\right)^{3}\right. .
d_{o}=154.96 \times 10^{-3} m =155 mm (iii).
Step IV Inner diameter of washer
d_{i}=\frac{d_{o}}{1.75}=\frac{155}{1.75}=88.57 mm (iv).