Question 10.26: A Belleville spring is made of silicon steel. The spring is ...

A Belleville spring is made of silicon steel. The spring is compressed completely flat when it is subjected to an axial force of 4500 N. The corresponding maximum stress is \left(1375 \times 10^{6}\right) N / m ^{2}. Assume,

\frac{d_{o}}{d_{i}}=1.75 \quad \text { and } \quad \frac{h}{t}=1.5

Calculate
(i) thickness of the washer;
(ii) free height of the washer minus thickness (h);
(iii) outer diameter of the washer; and
(iv) inner diameter of the washer.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

\text { Given } P=4500 N \quad \sigma_{\max .}=1375 \times 10^{5} N / m ^{2} .

Step I Thickness of washer
When the spring is compressed completely flat,

\delta=h .

From Eqs (10.44), (10.45) and (10.46),

M=\frac{6}{\pi \log _{e}\left(d_{o} / d_{i}\right)}\left[\frac{\left(d_{o} / d_{i}\right)-1}{\left(d_{o} / d_{i}\right)}\right]^{2}               (10.44)

C_{1}=\frac{6}{\pi \log _{e}\left(d_{o} / d_{i}\right)}\left[\frac{\left(d_{o} / d_{i}\right)-1}{\log _{e}\left(d_{o} / d_{i}\right)}-1\right]             (10.45)

C_{2}=\frac{6}{\pi \log _{e}\left(d_{o} / d_{i}\right)}\left[\frac{\left(d_{o} / d_{i}\right)-1}{2}\right]                   (10.46).

M=\frac{6}{\pi \log _{e}\left(d_{o} / d_{i}\right)}\left[\frac{\left(d_{o} / d_{i}\right)-1}{\left(d_{o} / d_{i}\right)}\right]^{2} .

=\frac{6}{\pi \log _{e}(1.75)}\left[\frac{1.75-1}{1.75}\right]^{2}=0.6268 .

C_{1}=\frac{6}{\pi \log _{e}\left(d_{o} / d_{i}\right)}\left[\frac{\left(d_{o} / d_{i}\right)-1}{\log _{e}\left(d_{o} / d_{i}\right)}-1\right] .

=\frac{6}{\pi \log _{e}(1.75)}\left[\frac{1.75-1}{\log _{e}(1.75)}-1\right]=1.161 .

=\frac{6}{\pi \log _{e}(1.75)}\left[\frac{1.75-1}{\log _{e}(1.75)}-1\right]=1.161 .

C_{2}=\frac{6}{\pi \log _{e}\left(d_{o} / d_{i}\right)}\left[\frac{\left(d_{o} / d_{i}\right)-1}{2}\right] .

=\frac{6}{\pi \log _{e}(1.75)}\left[\frac{1.75-1}{2}\right]=1.28 .

Dividing Eq. (10.42) by Eq. (10.43)

P=\frac{E \delta}{\left(1-\mu^{2}\right) M\left(d_{o} / 2\right)^{2}}\left[(h-\delta / 2)(h-\delta) t+t^{3}\right]                   (10.42).

\sigma=\frac{E \delta}{\left(1-\mu^{2}\right) M\left(d_{o} / 2\right)^{2}}\left[C_{1}(h-\delta / 2)+C_{2} t\right]               (10.43).

\frac{P}{\sigma}=\frac{(h-\delta / 2)(h-\delta) t+t^{3}}{C_{1}(h-\delta / 2)+C_{2} t}=\frac{t^{3}}{C_{1}(h-\delta / 2)+C_{2} t} .

\text { because }(h=\delta) .

Substituting values,

\frac{4500}{1375\left(10^{6}\right)}=\frac{t^{3}}{(1.161)(1.5 t-1.5 t / 2)+(1.28) t}=\frac{t^{2}}{2.15} .

t=2.653\left(10^{-3}\right) m =2.653 mm =2.65 mm             (i).

Step II Free height of washer minus thickness (h)

h = 1.5 t = 1.5 (2.65) = 3.98 mm = 4 mm               (ii)
Step III Outer diameter of washer
From Eq. (10.42),

P=\frac{E \delta}{\left(1-\mu^{2}\right) M\left(d_{o} / 2\right)^{2}}\left[(h-\delta / 2)(h-\delta) t+t^{3}\right]                   (10.42).

P=\frac{E \delta}{\left(1-\mu^{2}\right) M\left(d_{o} / 2\right)^{2}}\left[(h-\delta / 2)(h-\delta) t+t^{3}\right] .

\text { or } P=\frac{E \delta}{\left(1-\mu^{2}\right) M\left(d_{o} / 2\right)^{2}}\left[t^{3}\right] \quad \text { because }(h=\delta) .

E=207000 N / mm ^{2}=\left(207000 \times 10^{6}\right) N / m ^{2} .

μ = 0.3.

t=\left(2.65 \times 10^{-3}\right) m \quad h=\delta=\left(4 \times 10^{-3}\right)=0.004 m .

Substituting these values,

\text { or } 4500=\frac{\left(207000 \times 10^{6}\right)(0.004)}{\left(1-0.3^{2}\right)(0.6268)\left(d_{o} / 2\right)^{2}}\left[\left(2.65 \times 10^{-3}\right)^{3}\right. .

d_{o}=154.96 \times 10^{-3} m =155 mm             (iii).

Step IV Inner diameter of washer

d_{i}=\frac{d_{o}}{1.75}=\frac{155}{1.75}=88.57 mm               (iv).

Related Answered Questions