Given : 2 \beta=30^{\circ} \text { or } \beta=15^{\circ} ; \alpha=750 mm ^{2}=750 \times 10^{-6} m ^{2} ; \mu=0.12 ; \rho=1.2 Mg / m ^{3} =1200 kg / m ^{3} ; \sigma=7 MPa =7 \times 10^{6} N / m ^{2} ; d=300 mm =0.3 m ; N=1500 r.p.m.
Power transmitted
We know that velocity of the belt,
v=\frac{\pi d . N}{60}=\frac{\pi \times 0.3 \times 1500}{60}=23.56 m / s
and mass of the belt per metre length,
m=\text { Area } \times \text { length } \times \text { density }=750 \times 10^{-6} \times 1 \times 1200=0.9 kg / m
\therefore Centrifugal tension,
T_{ C }=m \cdot v^{2}=0.9(23.56)^{2}=500 N
We know that maximum tension in the belt,
T=\text { Maximum stress } \times \text { cross-sectional area of belt }=\sigma \times a
=7 \times 10^{6} \times 750 \times 10^{-6}=5250 N
\therefore Tension in the tight side of the belt,
T_{1}=T-T_{ C }=5250-500=4750 N
Let T_{2} = Tension in the slack side of the belt.
Since the pulleys are of the same size, therefore angle of contact, \theta=180^{\circ}=\pi rad.
We know that
2.3 \log \left(\frac{T_{1}}{T_{2}}\right)=\mu . \theta \operatorname{cosec} \beta=0.12 \times \pi \times \operatorname{cosec} 15^{\circ}=1.457
\log \left(\frac{T_{1}}{T_{2}}\right)=\frac{1.457}{2.3}=0.6334 \text { or } \frac{T_{1}}{T_{2}}=4.3 …(Taking antilog of 0.6334)
and T_{2}=\frac{T_{1}}{4.3}=\frac{4750}{4.3}=1105 N
We know that power transmitted,
P=\left(T_{1}-T_{2}\right) v \times 2 \ldots(\because \text { No. of belts }=2)
=(4750-1105) 23.56 \times 2=171752 W =171.752 kW
Shaft speed
Let N_{1} = Shaft speed in r.p.m., and
v_{1}= Belt speed in m/s.
We know that for maximum power, centrifugal tension,
T_{C}=T / 3 \text { or } m\left(v_{1}\right)^{2}=T / 3 \text { or } 0.9\left(v_{1}\right)^{2}=5250 / 3=1750
\therefore \left(v_{1}\right)^{2}=1750 / 0.9=1944.4 \text { or } v_{1}=44.1 m / s
We know that belt speed \left(v_{1}\right),
44.1=\frac{\pi d . N_{1}}{60}=\frac{\pi \times 0.3 \times N_{1}}{60}=0.0157 N _{1}
\therefore N_{1}=44.1 / 0.0157=2809 \text { r.p.m. }