Question : A belt drive consists of two V-belts in parallel, on grooved...

A belt drive consists of two V-belts in parallel, on grooved pulleys of the same size. The angle of the groove is 30^{\circ}. The cross-sectional area of each belt is 750 mm ^{2} and\mu .=0.12. The density of the belt material is 1.2 Mg / m ^{3} and the maximum safe stress in the material is 7 MPa. Calculate the power that can be transmitted between pulleys 300 mm diameter rotating at 1500 r.p.m. Find also the shaft speed in r.p.m. at which the power transmitted would be maximum.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Given :   2 \beta=30^{\circ} \text { or } \beta=15^{\circ} ; \alpha=750 mm ^{2}=750 \times 10^{-6} m ^{2} ; \mu=0.12 ; \rho=1.2 Mg / m ^{3} =1200 kg / m ^{3} ; \sigma=7 MPa =7 \times 10^{6} N / m ^{2} ; d=300 mm =0.3 m ; N=1500 r.p.m.

 

Power transmitted

We know that velocity of the belt,

v=\frac{\pi d . N}{60}=\frac{\pi \times 0.3 \times 1500}{60}=23.56 m / s

and mass of the belt per metre length,

m=\text { Area } \times \text { length } \times \text { density }=750 \times 10^{-6} \times 1 \times 1200=0.9 kg / m

\therefore   Centrifugal tension,

T_{ C }=m \cdot v^{2}=0.9(23.56)^{2}=500 N

We know that maximum tension in the belt,

T=\text { Maximum stress } \times \text { cross-sectional area of belt }=\sigma \times a

 

=7 \times 10^{6} \times 750 \times 10^{-6}=5250 N

 

\therefore Tension in the tight side of the belt,

T_{1}=T-T_{ C }=5250-500=4750 N

Let    T_{2} = Tension in the slack side of the belt.

Since the pulleys are of the same size, therefore angle of contact, \theta=180^{\circ}=\pi rad.

We know that

2.3 \log \left(\frac{T_{1}}{T_{2}}\right)=\mu . \theta \operatorname{cosec} \beta=0.12 \times \pi \times \operatorname{cosec} 15^{\circ}=1.457

 

\log \left(\frac{T_{1}}{T_{2}}\right)=\frac{1.457}{2.3}=0.6334 \text { or } \frac{T_{1}}{T_{2}}=4.3                                                          …(Taking antilog of 0.6334)

and     T_{2}=\frac{T_{1}}{4.3}=\frac{4750}{4.3}=1105 N

We know that power transmitted,

P=\left(T_{1}-T_{2}\right) v \times 2                 \ldots(\because \text { No. of belts }=2)

 

=(4750-1105) 23.56 \times 2=171752 W =171.752 kW

 

Shaft speed

Let    N_{1} = Shaft speed in r.p.m., and

v_{1}= Belt speed in m/s.

We know that for maximum power, centrifugal tension,

T_{C}=T / 3 \text { or } m\left(v_{1}\right)^{2}=T / 3 \text { or } 0.9\left(v_{1}\right)^{2}=5250 / 3=1750

 

\therefore \left(v_{1}\right)^{2}=1750 / 0.9=1944.4 \text { or } v_{1}=44.1 m / s

 

We know that belt speed \left(v_{1}\right),

44.1=\frac{\pi d . N_{1}}{60}=\frac{\pi \times 0.3 \times N_{1}}{60}=0.0157 N _{1}

 

\therefore N_{1}=44.1 / 0.0157=2809 \text { r.p.m. }