A bracket is welded to the vertical plate by means of two fillet welds as shown in Fig. 8.33. Determine the size of the welds, if the permissible shear stress is limited to 70 N/mm².
A bracket is welded to the vertical plate by means of two fillet welds as shown in Fig. 8.33. Determine the size of the welds, if the permissible shear stress is limited to 70 N/mm².
\text { Given } P=50 kN \quad \tau=70 N / mm ^{2} .
Step I Primary shear stress
The total area of two vertical welds is given by,
A=2(400 t)=(800 t) mm ^{2} .
The primary shear stress in the weld is given by,
\tau_{1}=\frac{P}{A}=\frac{50000}{800 t}=\frac{62.5}{t} N / mm ^{2} (i).
Step II Bending stress
The moment of inertia of two welds about the X-axis is given by,
I=2\left[\frac{t(400)^{3}}{12}\right]=\left(10.67 \times 10^{6} t\right) mm ^{4} .
From Eq. (8.28),
\sigma_{b}=\frac{M_{b} y}{I} (8.28).
\sigma_{b}=\frac{M_{b} y}{I}=\frac{\left(50 \times 10^{3} \times 300\right)(200)}{\left(10.67 \times 10^{6} t\right)} .
=\frac{281.16}{t} N / mm ^{2} (ii).
Step III Maximum shear stress
The maximum principal shear stress in the weld is given by,
\tau=\sqrt{\left(\frac{\sigma_{b}}{2}\right)^{2}+\left(\tau_{1}\right)^{2}}=\sqrt{\left(\frac{281.16}{2 t}\right)^{2}+\left(\frac{62.5}{t}\right)^{2}} .
=\frac{153.85}{t} N / mm ^{2} .
Step IV Size of weld
The permissible shear stress in the weld is 70 N/mm². Therefore,
\frac{153.85}{t}=70 \quad \text { or } \quad t=2.2 mm .
h=\frac{t}{0.707}=\frac{2.2}{0.707}=3.11 \quad \text { or } \quad 4 mm .