Question 5.1: (a) Calculate the commutators [^X, ^Lx],[^X, ^Ly], and [^X, ...

(a) Calculate the commutators [\hat{X} ,\hat{L} _x],[\hat{X} ,\hat{L} _y],  and  [\hat{X} ,\hat{L} _z].

(b) Calculate the commutators: [\hat{P}_x ,\hat{L} _x],[\hat{P}_x ,\hat{L} _y],  and  [\hat{P}_x ,\hat{L} _z].

(c) Use the results of (a) and (b) to calculate [\hat{X} ,\hat{\vec{L^2} } ]  and  [\hat{P} _x,\hat{\vec{L^2}} ].

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) The only nonzero commutator which involves \hat{X}   and the various components of \hat{L}_x \hat{L}_y \hat{L}_z   is [\hat{X} ,\hat{P}_x ]=i\hbar .   Having stated this result, we can easily evaluate the needed commutators. First, since \hat{L}_x =\hat{Y} \hat{P}_z-\hat{Z} \hat{P} _y   involves no \hat{P} _x ,  the operator \hat{X}  commutes separately with \hat{Y} ,\hat{P}_z, \hat{Z}  and  \hat{P}_y;   hence

[\hat{X} ,\hat{L}_x]= [\hat{X}, \hat{Y}\hat{P}_z-\hat{Z}\hat{P}_y]=0.                (5.9)

The evaluation of the other two commutators is straightforward:

[\hat{X} ,\hat{L}_y]= [\hat{X}, \hat{Z}\hat{P}_x-\hat{X}\hat{P}_z]=[\hat{X} ,\hat{Z} \hat{P}_x]=\hat{Z}[\hat{X} ,\hat{P}_x] =i\hbar \hat{Z},                (5.10)

[\hat{X} ,\hat{L}_z]= [\hat{X}, \hat{X}\hat{P}_y-\hat{Y}\hat{P}_x]=-[\hat{X} ,\hat{Y} \hat{P}_x]=-\hat{Y}[\hat{X} ,\hat{P}_x] =-i\hbar \hat{Y}.                   (5.11)

(b) The only commutator between \hat{P}_x  and the components of \hat{L}_x,\hat{L}_y,\hat{L}_z  that survives is again [\hat{P}_x ,\hat{X}] =-i\hbar .  We may thus infer

[\hat{P}_x ,\hat{L}_x] =[\hat{P} _x,\hat{Y} \hat{P} _z-\hat{Z} \hat{P} _y] =0,            (5.12)

[\hat{P}_x ,\hat{L}_y] =[\hat{P} _x,\hat{Z} \hat{P} _x-\hat{X} \hat{P} _z]=-[\hat{P} _x,\hat{X} \hat{P} _z]=-[\hat{P} _x,\hat{X} ]\hat{P} _z=i\hbar \hat{P} _z,              (5.13)

[\hat{P}_x ,\hat{L}_z] =[\hat{P} _x,\hat{X} \hat{P} _y-\hat{Y} \hat{P} _X]=[\hat{P} _x,\hat{X} \hat{P} _y]=[\hat{P} _x,\hat{X} ]\hat{P} _y=i\hbar \hat{P} _y.               (5.14)

(c) Using the commutators derived in (a) and (b), we infer

[\hat{X} ,\hat{\vec{L^2} } ] =[\hat{X},\hat{L}^2_x ]+[\hat{X} ,\hat{L}^2_y]+[\hat{X} ,\hat{L}^2_z]

=0+\hat{L} _y[\hat{X} ,\hat{L} _y ] +[\hat{X},\hat{L}_y ]\hat{L} _y+\hat{L} _z[\hat{X} ,\hat{L}_z]+[\hat{X} ,\hat{L}_z ]\hat{L}_z

=i\hbar (\hat{L} _y\hat{Z}+\hat{Z}\hat{L}_y-\hat{L}_z\hat{Y}-\hat{Y}\hat{L}_y),               (5.15)

[\hat{P}_x ,\hat{\vec{L^2} } ] =[\hat{P}_x,\hat{L}^2_x ]+[\hat{P}_x ,\hat{L}^2_y]+[\hat{P}_x ,\hat{L}^2_z]

=0+\hat{L} _y[\hat{P}_x ,\hat{L} _y ] +[\hat{P}_x,\hat{L}_y ]\hat{L} _y+\hat{L} _z[\hat{P}_x ,\hat{L}_z]+[\hat{P}_x ,\hat{L}_z ]\hat{L}_z

=i\hbar (\hat{L} _y\hat{P}_z+\hat{P}_z\hat{L}_y-\hat{L}_z\hat{P}_y-\hat{P}_y\hat{L}_y).                  (5.16)

Related Answered Questions