Question 11.P.1: (a) Calculate the differential cross section in the Born app...

(a) Calculate the differential cross section in the Born approximation for the potential V(r)=V_{0} e^{-r / R} / r, known as the Yukawa potential.

(b) Calculate the total cross section. (c) Find the relation between V_{0} and R so that the Born approximation is valid.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) Inserting V(r)=V_{0} e^{-r / R} / r into (11.70),

\frac{d \sigma}{d \Omega}=|f(\theta)|^{2}=\frac{4 \mu^{2}}{\hbar^{4} q^{2}}\left|\int_{0}^{\infty} r^{\prime} V\left(r^{\prime}\right) \sin \left(q r^{\prime}\right) d r^{\prime}\right|^{2}.              (11.70)

we obtain

\frac{d \sigma}{d \Omega}=\frac{4 \mu^{2} V_{0}^{2}}{\hbar^{4} q^{2}}\left|\int_{0}^{\infty} e^{-r / R} \sin (q r) d r\right|^{2},                  (11.133)

where

\int_{0}^{\infty} e^{-r / R} \sin (q r) d r=\frac{1}{2 i} \int_{0}^{\infty} e^{-(1 / R-i q) r} d r-\frac{1}{2 i} \int_{0}^{\infty} e^{-(1 / R+i q) r} d r

 

=\frac{1}{2 i}\left[\frac{1}{1 / R-i q}-\frac{1}{1 / R+i q}\right]=\frac{q}{1 / R^{2}+q^{2}};                       (11.134)

hence

\frac{d \sigma}{d \Omega}=\frac{4 \mu^{2} V_{0}^{2}}{\hbar^{4}} \frac{1}{\left(1 / R^{2}+q\right)^{2}}=\frac{4 \mu^{2} V_{0}^{2}}{\hbar^{4}} \frac{1}{\left[1 / R^{2}+4 k^{2} \sin ^{2}(\theta / 2)\right]^{2}}.               (11.135)

Note that a connection can be established between this relation and the differential cross section for a Coulomb potential V(r)=Z_{1} Z_{2} e^{2} / r. For this, we need only to insert V_{0}=-Z_{1} Z_{2} e^{2} into (11.135) and then take the limit R → ∞; this leads to (11.77):

\frac{d \sigma}{d \Omega}=\left(\frac{2 Z_{1} \mu Z_{2} e^{2}}{\hbar^{2} q^{2}}\right)^{2}=\left(\frac{Z_{1} Z_{2} \mu e^{2}}{2 \hbar^{2} k^{2}}\right)^{2} \sin ^{-4}\left(\frac{\theta}{2}\right)=\frac{Z_{1}^{2} Z_{2}^{2} e^{4}}{16 E^{2}} \sin ^{-4}\left(\frac{\theta}{2}\right),              (11.77)

 

\left(\frac{d \sigma}{d \Omega}\right)_{R u t h e r f o r d}=\lim _{R \rightarrow \infty}\left(\frac{d \sigma}{d \Omega}\right)_{\text {Yukawa }} .                   (11.136)

(b) The total cross section can be obtained at once from (11.135):

\sigma=\int \frac{d \sigma}{d \Omega} \sin \theta d \theta d \varphi=2 \pi \int_{0}^{\pi} \frac{d \sigma}{d \Omega} \sin \theta d \theta=2 \pi \frac{4 \mu^{2} V_{0}^{2} R^{4}}{\hbar^{4}} \int_{0}^{\pi} \frac{\sin \theta d \theta}{\left(1+4 k^{2} R^{2} \sin ^{2}(\theta / 2)\right)^{2}} .          (11.137)

The change of variable x=2 k R \sin (\theta / 2) leads to \sin \theta d \theta=x d x /\left(k^{2} R^{2}\right); hence

\sigma=\frac{8 \pi \mu^{2} V_{0}^{2} R^{4}}{\hbar^{4}} \frac{1}{k^{2} R^{2}} \int_{0}^{2 k R} \frac{x d x}{\left(1+x^{2}\right)^{2}}=\frac{16 \pi \mu^{2} V_{0}^{2} R^{4}}{\hbar^{4}} \frac{1}{1+4 k^{2} R^{2}}

 

=\frac{16 \pi \mu^{2} V_{0}^{2} R^{4}}{\hbar^{4}} \frac{1}{1+8 \mu E R^{2} / \hbar^{2}},                   (11.138)

where we have used k^{2}=2 \mu E / \hbar^{2} ; E is the energy of the scattered particle.

(c) The validity condition of the Born approximation is

\frac{\mu V_{0}}{\hbar^{2} k^{2}}\left|\int_{0}^{\infty} \frac{e^{-a r}}{r}\left(e^{2 i k r}-1\right) d r\right| \ll 1,              (11.139)

where a = 1/R. To evaluate the integral

I=\int_{0}^{\infty} \frac{e^{-a r}}{r}\left(e^{2 i k r}-1\right) d r                  (11.140)

let us differentiate it with respect to the parameter a:

\frac{\partial I}{\partial a}=-\int_{0}^{\infty} e^{-a r}\left(e^{2 i k r}-1\right) d r=-\frac{1}{a-2 i k}+\frac{1}{a}.             (11.141)

Now, integrating over the parameter a such that I (a = +∞) = 0, we obtain

I=\ln a-\ln (a-2 i k)=-\ln \left(1-2 i \frac{k}{a}\right)=-\frac{1}{2} \ln \left(1+\frac{4 k^{2}}{a^{2}}\right)+i \tan ^{-1}\left(\frac{2 k}{a}\right) .               (11.142)

Thus, the validity condition (11.139) becomes

\frac{\mu V_{0}}{\hbar^{2} k^{2}}\left\{\frac{1}{4}\left[\ln \left(1+4 k^{2} R^{2}\right)\right]^{2}+\left(\tan ^{-1}(2 k R)\right)^{2}\right\}^{1 / 2} \ll 1.                   (11.143)

Related Answered Questions