Question 11.2: (a) Calculate the differential cross section in the first Bo...

(a) Calculate the differential cross section in the first Born approximation for a Coulomb potential V(r)=Z_1Z_2e^2/r,  where Z_1e  and Z_1e  are the charges of the projectile and target particles, respectively.

(b) To have a quantitative idea about the cross section derived in (a), consider the scattering of an alpha particle (i.e., a helium nucleus with Z_1=2  and  A_1=4)  from a gold nucleus (Z_2=79  and  A_2=197).  (i) If the scattering angle of the alpha particle in the Lab frame is \theta _1=60^\circ   , find its scattering angle θ in the CM frame. (ii) If the incident energy of the alpha particle is 8MeV, find a numerical estimate for the cross section derived in (a).

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

In the case of a Coulomb potential, V(r)=Z_1Z_2e^2/r, equation (11.70) \frac{d\sigma }{d\Omega }=\left|f(\theta )\right|^2=\frac{4\mu ^2}{\hbar ^4q^2}\left|\int_{0}^{\infty }{r^\prime V(r^\prime )}\sin (qr^\prime )dr^\prime \right| ^2. becomes
\frac{d\sigma }{d\Omega }=\frac{4Z^2_1Z^2_2e^4\mu ^2}{\hbar ^4q^2}\left|\int_{0}^{\infty }{\sin (qr)dr} \right| ^2, (11.75)
where
\int_{0}^{\infty }{\sin (qr)dr}=\underset{\lambda \rightarrow 0}{\lim}\int_{0}^{\infty}{e^{-\lambda r}}\sin (qr)dr=\frac{1}{2i} \underset{\lambda \rightarrow 0}{\lim} \left[ \int_{0}^{\infty}{e^{-(\lambda-iq) r}}dr -\int_{0}^{\infty}{e^{-(\lambda+iq) r}}dr\right]
=\frac{1}{2i}\underset{\lambda \rightarrow 0}{\lim} \left[\frac{1}{\lambda -iq}-\frac{1}{\lambda +iq} \right] =\frac{1}{q}. (11.76)

Now, since q=2k\sin (\theta /2) , an insertion of (11.76) into (11.75) leads to

\frac{d\sigma }{d\Omega }= \left(\frac{2Z_1\mu Z_2e^2}{\hbar ^2q^2} \right) ^2=\left(\frac{Z_1 Z_2\mu e^2}{2\hbar ^2k^2}\right) ^2\sin ^{-4}\left(\frac{\theta }{2} \right) =\frac{Z^2_1Z^2_2e^4}{16E^2}\sin ^{-4}\left(\frac{\theta }{2} \right) ,                 (11.77)

where E=\hbar ^2k^2/2\mu   is the kinetic energy of the incident particle. This relation is known as the Rutherford formula or the Coulomb cross section.
(b) (i) Since the mass ratio of the alpha particle to the gold nucleus is roughly equal to the ratio of their atomic masses, m_1/m_2=A_1/A_2=\frac{4}{197}=0.0203,   and since \theta _1=60^\circ ,   equation (11.14) \tan \theta _1=\frac{\sin \theta }{\cos \theta +V_{2_C}/V_{1_C}}=\frac{\sin \theta}{\cos \theta +m_1/m_2},   yields the value of the scattering angle in the CM frame:

\tan 60^\circ =\frac{\sin \theta }{\cos \theta +0.0203}    \Longrightarrow     \theta =61^ \circ.                 (11.78)

(ii) The numerical estimate of the cross section can be made easier by rewriting (11.77) in terms of the fine structure constant \alpha =e^2/\hbar c=\frac{1}{137}  and  \hbar c=197.33  MeV  fm:

\frac{d\sigma }{d\Omega }=\frac{Z_1^2Z^2_2}{16E^2} \left(\frac{e^2}{\hbar c} \right)^2(\hbar c)^2 \sin ^{-4}\left(\frac{\theta }{2} \right) =\left(\frac{Z_1Z_2\alpha }{4} \right) ^2\left(\frac{\hbar c}{E} \right) ^2\sin ^{-4}\left(\frac{\theta }{2} \right).              (11.79)

Since Z_1=2,Z_2=79,\theta =61^\circ ,\alpha =\frac{1}{137},\hbar c=197.33  MeV  fm  ,  and  E=8  MeV,   we have

\frac{d\sigma }{d\Omega }=\left(\frac{2\times 79}{4\times 137} \right) ^2\left(\frac{197.33MeV fm}{8MeV} \right) ^2\sin ^{-4}(30.5^\circ )

=30.87fm^2=0.31\times 10^{-28}m^2=0.31   barn,          (11.80)

where 1  barn  =10^{-28}m^2.

Related Answered Questions