Question 4.P.15: (a) Calculate the expectation value of the operator X^4 in t...

(a) Calculate the expectation value of the operator \hat{X}^{4} in the N-representation with respect to the state |n〉 (i.e., 〈n|\hat{X}^{4}|n〉).

(b) Use the result of (a) to calculate the energy E_{n} for a particle whose Hamiltonian is \hat {H}=\hat{P}^{2}/(2m)+\frac{1}{2}m\omega ^{2}\hat{X}^{2}-\lambda \hat{X}^{4}.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) Since \Sigma ^{\infty }_{m=0}|m〉〈m|=1 we can write the expectation value of \hat{X}^{4} as

〈n|\hat{X}^{4}|n〉=\sum\limits_{m=0}^{\infty }〈n|\hat {X}^{2}|m〉〈m|\hat{X}^{2}|n〉=\sum\limits_{m=0}^{\infty }\left|〈m|\hat{X}^{2}|n〉\right| ^{2}.            (4.318)

Now since

\hat{X}^{2}=\frac{\hbar }{2m\omega }\left(\hat{a}^{2} +\hat {a}^{\dagger 2}+\hat{a}\hat{a}^{\dagger }+\hat{a}^{\dagger }\hat {a}\right) =\frac{\hbar }{2m\omega }\left(\hat{a}^{2}+ \hat {a}^{\dagger 2}+2\hat{a}^{\dagger }\hat{a}+1\right),           (4.319)

the only terms 〈m|\hat{X}^{2}|n〉 that survive are

〈n|\hat{X}^{2}|n〉=\frac{\hbar }{2m\omega }〈n|2\hat {a}^{\dagger }\hat{a}+1|n 〉=\frac{\hbar }{2m\omega }(2n+1),           (4.320)

 

〈n-2|\hat{X}^{2}|n〉=\frac{\hbar }{2m\omega }〈n-2|\hat {a}^{2}|n 〉=\frac{\hbar }{2m\omega }\sqrt{n(n-1)},         (4.321)

 

〈n+2|\hat{X}^{2}|n〉=\frac{\hbar }{2m\omega }〈n+2|\hat {a}^{\dagger 2}|n 〉=\frac{\hbar }{2m\omega }\sqrt{(n+1)(n+2)}.          (4.322)

Thus

〈n|\hat{X}^{4}|n〉=\left|〈n|\hat{X}^{2}|n〉\right| ^{2} +\left|〈n-2|\hat{X}^{2}|n〉\right| ^{2}+\left|〈n+2|\hat{X}^{2}|n〉\right| ^{2}

 

=\frac{\hbar ^{2} }{4m^{2}\omega ^{2}} \left[(2n+1)^{2}+ n(n-1)+(n+1)(n+2) \right]

 

=\frac{\hbar ^{2} }{4m^{2}\omega ^{2}}\left(6n^{2}+6n+3 \right).                                                                       (4.323)

(b) Using (4.323), and since the Hamiltonian can be expressed in terms of the harmonic oscillator, \hat{H}=\hat{H}_{HO} -\lambda \hat{X}^{4}, we immediately obtain the particle energy:

E_{n}=〈n|\hat{H}_{HO}|n〉-\lambda 〈n|\hat{X}^{4}|n〉 =\hbar \omega \left(n+\frac{1}{2} \right) -\frac{\lambda \hbar ^{2} }{4m^{2}\omega ^{2}}\left(6n^{2}+6n+3 \right).         (4.324)

Related Answered Questions