(a) Calculate the expression of 〈2,0|Y_{10}|1,0 〉.
(b) Use the result of (a) along with the Wigner–Eckart theorem to calculate the reduced matrix element 〈2 \parallel Y_{1} \parallel 1〉.
(a) Calculate the expression of 〈2,0|Y_{10}|1,0 〉.
(b) Use the result of (a) along with the Wigner–Eckart theorem to calculate the reduced matrix element 〈2 \parallel Y_{1} \parallel 1〉.
(a) Since
〈2,0|Y_{10}|1,0 〉=\int_{0}^{\pi } \sin \theta d\theta \int_{0} ^{2\pi } Y^{*}_{20} (\theta ,\varphi )Y_{10}(\theta ,\varphi ) Y_{10}(\theta ,\varphi )d\varphi , (7.396)
and using the relations Y_{20} (\theta ,\varphi )=\sqrt{5/(16\pi )} (3\cos ^{2} \theta -1) and Y_{10}(\theta ,\varphi )= \sqrt {3/(4\pi )} \cos \theta , we have
〈2,0|Y_{10}|1,0 〉=\frac{3}{4\pi } \sqrt{\frac{5}{16\pi } } \int_{0}^{\pi }\cos ^{2}\theta (3\cos ^{2} \theta -1)\sin \theta d\theta \int_{0}^{2\pi }d\varphi
=\frac{3}{2} \sqrt{\frac{5}{16\pi } }\int_{0}^{\pi }\cos ^{2} \theta (3\cos ^{2} \theta -1)\sin \theta d\theta . (7.397)
The change of variables x=\cos \theta leads to
〈2,0|Y_{10}|1,0 〉=\frac{3}{2}\sqrt{\frac{5}{16\pi } } \int_{0}^{\pi }\cos ^{2}\theta (3\cos ^{3} \theta -1)\sin \theta d \theta
=\frac{3}{2}\sqrt{\frac{5}{16\pi } }\int_{-1}^{1}x^{2} (3x^{2} -1)dx=\frac{1}{\sqrt{5\pi } } . (7.398)
(b) Applying the Wigner–Eckart theorem to 〈2,0|Y_{10}|1,0 〉 and using the Clebsch– Gordan coefficient 〈1,1;0,0|2,0 〉=2\sqrt{6} , we have
〈2,0|Y_{10}|1,0 〉=〈1,1;0,0|2,0 〉〈2\parallel Y_{1} \parallel 1〉= \frac{2}{\sqrt{6} } 〈2\parallel Y_{1} \parallel 1〉. (7.399)
Finally, we may obtain 〈2\parallel Y_{1} \parallel 1〉 from (7.398) and (7.399):
〈2\parallel Y_{1} \parallel 1〉=\sqrt{\frac{3}{10\pi } } . (7.400)