Question 7.P.7: (a) Calculate the expression of 〈2, 0|Y10|1, 0 〉. (b) Use ...

(a) Calculate the expression of 〈2,0|Y_{10}|1,0 〉.

(b) Use the result of (a) along with the Wigner–Eckart theorem to calculate the reduced matrix element 〈2 \parallel Y_{1} \parallel 1〉.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) Since

〈2,0|Y_{10}|1,0 〉=\int_{0}^{\pi } \sin \theta d\theta \int_{0} ^{2\pi } Y^{*}_{20} (\theta ,\varphi )Y_{10}(\theta ,\varphi ) Y_{10}(\theta ,\varphi )d\varphi ,           (7.396)

and using the relations Y_{20} (\theta ,\varphi )=\sqrt{5/(16\pi )} (3\cos ^{2} \theta -1) and Y_{10}(\theta ,\varphi )= \sqrt {3/(4\pi )} \cos \theta , we have

〈2,0|Y_{10}|1,0 〉=\frac{3}{4\pi } \sqrt{\frac{5}{16\pi } } \int_{0}^{\pi }\cos ^{2}\theta (3\cos ^{2} \theta -1)\sin \theta d\theta \int_{0}^{2\pi }d\varphi

 

=\frac{3}{2} \sqrt{\frac{5}{16\pi } }\int_{0}^{\pi }\cos ^{2} \theta (3\cos ^{2} \theta -1)\sin \theta d\theta .            (7.397)

The change of variables x=\cos \theta leads to

〈2,0|Y_{10}|1,0 〉=\frac{3}{2}\sqrt{\frac{5}{16\pi } } \int_{0}^{\pi }\cos ^{2}\theta (3\cos ^{3} \theta -1)\sin \theta d \theta

 

=\frac{3}{2}\sqrt{\frac{5}{16\pi } }\int_{-1}^{1}x^{2} (3x^{2} -1)dx=\frac{1}{\sqrt{5\pi } } .                       (7.398)

(b) Applying the Wigner–Eckart theorem to 〈2,0|Y_{10}|1,0 〉 and using the Clebsch– Gordan coefficient 〈1,1;0,0|2,0 〉=2\sqrt{6} , we have

〈2,0|Y_{10}|1,0 〉=〈1,1;0,0|2,0 〉〈2\parallel Y_{1} \parallel 1〉= \frac{2}{\sqrt{6} } 〈2\parallel Y_{1} \parallel 1〉.               (7.399)

Finally, we may obtain 〈2\parallel Y_{1} \parallel 1〉 from (7.398) and (7.399):

〈2\parallel Y_{1} \parallel 1〉=\sqrt{\frac{3}{10\pi } } .                       (7.400)

Related Answered Questions

To find the matrix of d^{(1)} (\beta )=e^{-...