Question 9.79: (a) Calculate the phase shift of the circuit in Fig. 9.82. (...

(a) Calculate the phase shift of the circuit in Fig. 9.82.

(b) State whether the phase shift is leading or lagging (output with respect to input).

(c) Determine the magnitude of the output when the input is 120 V.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a)    Consider the circuit as shown.

\begin{aligned}&{Z}_{1}=j 30 \|(30+j 60)=\frac{(j 30)(30+j 60)}{30+j 90}=3+j 21\\\\&{Z}_{2}=\mathrm{j} 10 \|\left(40+\mathbf{Z}_{1}\right)=\frac{(\mathrm{j} 10)(43+\mathrm{j} 21)}{43+\mathrm{j} 31}=1.535+\mathrm{j} 8.896=9.028 \angle 80.21^{\circ}\\\\&\text { Let } {V}_{\mathrm{i}}=1 \angle 0^{\circ}\\\\&{V}_{2}=\frac{\mathbf{Z}_{2}}{{Z}_{2}+20} {V}_{\mathrm{i}}=\frac{\left(9.028 \angle 80.21^{\circ}\right)\left(1 \angle 0^{\circ}\right)}{21.535+\mathrm{j} 8.896}\\\\&{V}_{2}=0.3875 \angle 57.77^{\circ}\\\\&{V}_{1}=\frac{{Z}_{1}}{{Z}_{1}+40} {V}_{2}=\frac{3+\mathrm{j} 21}{43+\mathrm{j} 21} {V}_{2}=\frac{\left(21.213 \angle 81.87^{\circ}\right)\left(0.3875 \angle 57.77^{\circ}\right)}{47.85 \angle 26.03^{\circ}}\\\\&{V}_{1}=0.1718 \angle 113.61^{\circ}\\\\&{V}_{\mathrm{o}}=\frac{\mathrm{j} 60}{30+\mathrm{j} 60} {V}_{1}=\frac{\mathrm{j} 2}{1+\mathrm{j} 2} {V}_{1}=\frac{2}{5}(2+\mathrm{j}) {V}_{1}\\\\&{V}_{\mathrm{o}}=\left(0.8944 \angle 26.56^{\circ}\right)\left(0.1718 \angle 113.6^{\circ}\right)\\\\&{V}_{\mathrm{o}}=0.1536 \angle 140.2^{\circ}\end{aligned}

Therefore, the phase shift is 140.2°

(b)     The phase shift is leading.

(c)     If V_{i} = 120 V , then

V_{0} = (120)(0.1536∠140.2°) = 18.43∠140.2° V

and the magnitude is 18.43 V.

Capture

Related Answered Questions