Question 3.P.12: (a) Calculate the Poisson bracket between the x and y compon...

(a) Calculate the Poisson bracket between the x and y components of the classical orbital angular momentum.

(b) Calculate the commutator between the x and y components of the orbital angular momentum operator.

(c) Compare the results obtained in (a) and (b).

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) Using the definition (3.113)

\left\{A,B\right\} =\sum\limits_{j} \left(\frac{∂A}{∂qj}\frac{∂B}{∂pj}-\frac{∂A}{∂pj}\frac{∂B}{∂qj} \right).                     (3.113)

we can write the Poisson bracket \left\{l_{x},l_{y} \right\} as

\left\{l_{x},l_{y} \right\}=\sum\limits_{j=1}^{3} \left (\frac {∂l_{x}}{∂q_{j} }\frac{∂l_{y}}{∂p_{j} }-\frac{∂l_{x}}{∂p_{j} }\frac{∂l_{y}}{∂q_{j} } \right),                  (3.227)

where q_{1}=x,q_{2}=y,q_{3}=z, p_{1}=p_{x},p_{2}=p_{y}, and p_{3}=p_{z}. Since l_{x}=yp_{z}-zp_{y},l_{y}=zp_{x}-xp_{z},l_{z}=xp_{y}-yp_{x}, the only partial derivatives that survive are ∂l_{x}/∂z=-p_{y},∂l_{y}/∂p_{z}=-x,∂l_{x}/∂p_{z}=y, and ∂l_{y}/∂z=p_{x}. Thus, we have

\left\{l_{x},l_{y} \right\}=\frac{∂l_{x}}{∂z}\frac{∂l_{y}}{∂p_{z}} -\frac{∂l_{x}}{∂p_{z}}\frac{∂l_{y}}{∂z}=xp_{y}-yp_{x} =l_{z}.          (3.228)

(b) The components of \hat{\vec{L}} are listed in (3.26) to (3.28): \hat{L}_{x}=\hat{Y}\hat{P}_{z}-\hat{Z}\hat{P}_{y} ,\hat{Z}\hat{P}_{x}-\hat{X}\hat{P}_{z}, and \hat {L}_{z} =\hat{X}\hat{P}_{y}-\hat{Y}\hat{P}_{x}. Since \hat{X},\hat{Y} and \hat{Z} mutually commute and so do \hat{P}_{x}, \hat{P}_{y} and \hat{P}_{x}, \hat{P}_{y},

\hat{L}_{x}=\hat{Y}\hat{P}_{z}-\hat{Z}\hat{P}_{y}=-i\hbar \left(\hat{Y}\frac{∂}{∂z}-\hat{Z}\frac{∂}{∂y} \right),       (3.26)

 

\hat{L}_{y}=\hat{Z}\hat{P}_{x}-\hat{X}\hat{P}_{z}=-i\hbar \left(\hat{Z}\frac{∂}{∂x}-\hat{X}\frac{∂}{∂Z} \right),     (3.27)

 

\hat{L}_{z}=\hat{X}\hat{P}_{y}-\hat{Y}\hat{P}_{x}=-i\hbar \left(\hat{X}\frac{∂}{∂y}-\hat{Y}\frac{∂}{∂x} \right).      (3.28)

we have

[\hat{L}_{x},\hat{L}_{y}]=[\hat{Y}\hat{P}_{z}-\hat{Z}\hat {P}_{y},\hat{Z}\hat{P}_{x}-\hat{X}\hat{P}_{z}]

 

=[\hat{Y}\hat{P}_{z},\hat{Z}\hat{P}_{x}]-[\hat{Y}\hat {P}_{z},\hat{X}\hat{P}_{z}]-[\hat{Z}\hat{P}_{y}, \hat{Z}\hat {P}_{x}]+[\hat{Z}\hat{P}_{y},\hat{X}\hat{P}_{z}][/latex]

 

=\hat{Y}[\hat{P}_{z},\hat{Z}]\hat{P}_{x}+\hat{X}[\hat {Z},\hat{P}_{z}]\hat{P}_{y}=i\hbar (\hat{X}\hat{P}_{y}-\hat{Y} \hat{P}_{x})

 

=i\hbar \hat{L}_{z}.                                             (3.229)

(c) A comparison of (3.228) and (3.229) shows that

\left\{l_{x},l_{y} \right\}=l_{z}\longrightarrow [\hat{L}_{x}, \hat{L}_{y}]=i\hbar \hat{L}_{z}.                              (3.230)

Related Answered Questions