(a) From Example 2.1.6 we find, resolving the initial velocity vector into its vertical and horizontal components, that \mathbf{v}_{0}=300 \sqrt{3} \mathbf{i}+300 \mathbf{j}. Moreover, if we place the origin so that it coincides with the mouth of the cannon, then the initial position vector \mathrm{f}_{0} is (0,0) = 0\mathbf{i}+0 \mathbf{j}. From (9) \mathbf{f}(t)=-\frac{1}{2} g t^{2} \mathbf{j}+\mathbf{v}_{0} t+\mathbf{f}_{0}
\begin{aligned}\mathbf{f}(t) &=-\frac{1}{2} g t^{2} \mathbf{j}+300 \sqrt{3} t \mathbf{i}+300 t \mathbf{j}+\mathbf{0} \\&=300 \sqrt{3} t \mathbf{i}+\left(300 t-\frac{1}{2} g t^{2}\right) \mathbf{j}\end{aligned}
(b) The ball hits the ground when the vertical component of the position vector is zero, that is, when 300 t-\frac{1}{2} g t^{2}=0, which occurs at t=600 / g seconds.
(c) The total distance traveled is
s=\int_{0}^{600 / g}\left(\frac{d s}{d t}\right) d t.
But
\begin{aligned}\frac{d s}{d t} &=v(t)=|\mathbf{v}(t)|=\left|\mathbf{f}^{\prime}(t)\right|=|300 \sqrt{3} \mathbf{i}+(300-g t) \mathbf{j}| \\&=\sqrt{270,000+(300-g t)^{2}}\end{aligned}
Thus using formula (2.5.4), we have
\begin{aligned}s\left(t_{1}\right) &=\text { length of arc from} t_{0} \text { to } t_{1} \\&=\int_{t_{0}}^{t_{1}}\left(\frac{d s}{d t}\right) d t=\int_{t_{0}}^{t_{1}} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t .\end{aligned}
s=\int_{0}^{600 / 8}\left(\frac{d s}{d t}\right) d t=\int_{0}^{600 / 8} \sqrt{270,000+(300-g t)^{2}} d t \text { meters }
Let 300-g t=\sqrt{270,000} \tan \theta=300 \sqrt{3} \tan \theta. Then
-g d t=300 \sqrt{3} \sec ^{2} \theta d \theta
and
d t=\left(\frac{-300 \sqrt{3}}{g}\right) \sec ^{2} \theta d \theta
Also,
\sqrt{270,000+(300-g t)^{2}}=\sqrt{270,000\left(1+\tan ^{2} \theta\right)}=300 \sqrt{3} \sec \theta \text {. }
When t=0,300=300 \sqrt{3} \tan \theta, \tan \theta=1 / \sqrt{3}, and \theta=\pi / 6. When t=600 / g,
\begin{aligned}\tan \theta &=-1 / \sqrt{3} \text { and } \theta=-\pi / 6 . \text { Thus } \\s &=-\frac{1}{g} \int_{\pi / 6}^{-\pi / 6}(300 \sqrt{3})(300 \sqrt{3}) \sec ^{3} \theta d \theta \\&=\frac{270,000}{g} \int_{-\pi / 6}^{\pi / 6} \sec ^{3} \theta d \theta=\frac{540,000}{g} \int_{0}^{\pi / 6} \sec ^{3} \theta d \theta \\&=\left.\frac{270,000}{g}(\ln |\sec \theta+\tan \theta|+\sec \theta \tan \theta)\right|_{0} ^{\pi / 6} \\&=\frac{270,000}{g}\left(\ln \left|\frac{2}{\sqrt{3}}+\frac{1}{\sqrt{3}}\right|+\frac{2}{\sqrt{3}} \frac{1}{\sqrt{3}}\right)=\frac{270,000}{g}\left(\ln \sqrt{3}+\frac{2}{3}\right) \approx 33.467 \mathrm{~km} .\end{aligned}
(d) The maximum height is achieved when d y / d t=0. That is, when 300-g t=0 or when t=300 / g. For that value of t, y_{\max }=45,000 / g \approx 4587.2 \mathrm{~m}=4.5872 \mathrm{~km}.
(e) In 600 / g seconds, the x-component of f increases from 0 to (300 \sqrt{3}) \cdot(600 / g)\approx 31,780.7 \mathrm{~m} \approx 31.78 \mathrm{~km}.
(f) Since speed =v(t)=\sqrt{270,000+(300-g t)^{2}} meters per second, we find that upon impact t=600 / g seconds, so that
\begin{aligned}v\left(\frac{600}{g}\right) &=\sqrt{270,000+\left(300-g \cdot \frac{600}{g}\right)^{2}}=\sqrt{270,000+90,000} \\&=\sqrt{360,000}=600 \mathrm{~m} / \mathrm{sec}\end{aligned}
These results are illustrated in Figure 2.