Question 5.12: A cantilever beam made of cold drawn steel 4OC8 (Sut = 600 N...

A cantilever beam made of cold drawn steel 4OC8 \left(S_{u t}=600 N / mm ^{2} \text { and } S_{y t}=380\right. \left.N / m m^{2}\right)  is shown in Fig. 5.42. The force P acting at the free end varies from –50 N to +150 N. The expected reliability is 90% and the factor of safety is 2. The notch sensitivity factor at the fillet is 0.9. Determine the diameter ‘d’ of the beam at the fillet cross-section.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

\text { Given } P=-50 N \text { to }+150 N \quad S_{u t}=600 N / mm ^{2} .

S_{y t}=380 N / mm ^{2} \quad R=90 \% \quad(f s)=2 \quad q=0.9 .

Step I Endurance limit stress for cantilever beam

S_{e}^{\prime}=0.5 S_{u t}=0.5(600)=300 N / mm ^{2} .

From Fig. 5.24 (cold drawn steel and  S_{u t}=600 \left. N / mm ^{2}\right).

K_{a}=0.77 .

Assuming 7.5 < d < 50 mm,

K_{b}=0.85 .

\text { For } 90 \% \text { reliability, } K_{c}=0.897 .

\text { From Fig. } 5.5, K_{t}=1.44 .

From Eq. (5.12)

K_{f}=1+q\left(K_{t}-1\right)               (5.12).

K_{f}=1+q\left(K_{t}-1\right)=1+0.9(1.44-1)=1.396 .

K_{d}=\frac{1}{K_{f}}=\frac{1}{1.396}=0.716 .

S_{e}=K_{a} K_{b} K_{c} K_{d} S_{e}^{\prime} .

= 0.77 (0.85) (0.897) (0.716) (300)
= 126.11 N/mm².

Step II Construction of modified Goodman diagram
At the fillet cross-section,

\left(M_{b}\right)_{\max .}=150 \times 100=15000 N – mm .

\left(M_{b}\right)_{\min .}=-50 \times 100=-5000 N – mm .

\left(M_{b}\right)_{m}=\frac{1}{2}\left[\left(M_{b}\right)_{\max .}+\left(M_{b}\right)_{\min }\right] .

=\frac{1}{2}[15000-5000]=5000 N – mm .

\left(M_{b}\right)_{a}=\frac{1}{2}\left[\left(M_{b}\right)_{\max }-\left(M_{b}\right)_{\min }\right] .

\tan \theta=\frac{\left(M_{b}\right)_{a}}{\left(M_{b}\right)_{m}}=\frac{10000}{5000}=2 .

\theta=63.435^{\circ} .

The modified Goodman diagram for this example is shown in Fig. 5.43.
Step III Permissible stress amplitude
Refer to Fig. 5.43. The coordinates of the point X are determined by solving the following two equations simultaneously.

(i) Equation of line AB

\frac{S_{a}}{126.11}+\frac{S_{m}}{600}=1           (a).

(ii) Equation of line OX

\frac{S_{a}}{S_{m}}=\tan \theta=2 .

Solving the two equations,

S_{a}=114.12 N / mm ^{2} \text { and } S_{m}=57.06 N / mm ^{2} .

Step IV Diameter of beam

\text { Since } \quad \sigma_{a}=\frac{S_{a}}{(f s)} \quad \therefore \quad \frac{32\left(M_{b}\right)_{a}}{\pi d^{3}}=\frac{S_{a}}{(f s)} .

\frac{32(10000)}{\pi d^{3}}=\frac{114.12}{2} .

d = 12.13 mm.

5.5
5.43

Related Answered Questions