\text { Given } P=-50 N \text { to }+150 N \quad S_{u t}=600 N / mm ^{2} .
S_{y t}=380 N / mm ^{2} \quad R=90 \% \quad(f s)=2 \quad q=0.9 .
Step I Endurance limit stress for cantilever beam
S_{e}^{\prime}=0.5 S_{u t}=0.5(600)=300 N / mm ^{2} .
From Fig. 5.24 (cold drawn steel and S_{u t}=600 \left. N / mm ^{2}\right).
K_{a}=0.77 .
Assuming 7.5 < d < 50 mm,
K_{b}=0.85 .
\text { For } 90 \% \text { reliability, } K_{c}=0.897 .
\text { From Fig. } 5.5, K_{t}=1.44 .
From Eq. (5.12)
K_{f}=1+q\left(K_{t}-1\right) (5.12).
K_{f}=1+q\left(K_{t}-1\right)=1+0.9(1.44-1)=1.396 .
K_{d}=\frac{1}{K_{f}}=\frac{1}{1.396}=0.716 .
S_{e}=K_{a} K_{b} K_{c} K_{d} S_{e}^{\prime} .
= 0.77 (0.85) (0.897) (0.716) (300)
= 126.11 N/mm².
Step II Construction of modified Goodman diagram
At the fillet cross-section,
\left(M_{b}\right)_{\max .}=150 \times 100=15000 N – mm .
\left(M_{b}\right)_{\min .}=-50 \times 100=-5000 N – mm .
\left(M_{b}\right)_{m}=\frac{1}{2}\left[\left(M_{b}\right)_{\max .}+\left(M_{b}\right)_{\min }\right] .
=\frac{1}{2}[15000-5000]=5000 N – mm .
\left(M_{b}\right)_{a}=\frac{1}{2}\left[\left(M_{b}\right)_{\max }-\left(M_{b}\right)_{\min }\right] .
\tan \theta=\frac{\left(M_{b}\right)_{a}}{\left(M_{b}\right)_{m}}=\frac{10000}{5000}=2 .
\theta=63.435^{\circ} .
The modified Goodman diagram for this example is shown in Fig. 5.43.
Step III Permissible stress amplitude
Refer to Fig. 5.43. The coordinates of the point X are determined by solving the following two equations simultaneously.
(i) Equation of line AB
\frac{S_{a}}{126.11}+\frac{S_{m}}{600}=1 (a).
(ii) Equation of line OX
\frac{S_{a}}{S_{m}}=\tan \theta=2 .
Solving the two equations,
S_{a}=114.12 N / mm ^{2} \text { and } S_{m}=57.06 N / mm ^{2} .
Step IV Diameter of beam
\text { Since } \quad \sigma_{a}=\frac{S_{a}}{(f s)} \quad \therefore \quad \frac{32\left(M_{b}\right)_{a}}{\pi d^{3}}=\frac{S_{a}}{(f s)} .
\frac{32(10000)}{\pi d^{3}}=\frac{114.12}{2} .
d = 12.13 mm.