Given For cantilever spring, d = 10 mm.
l=500 mm \quad P=75 \text { to } 150 N \quad S_{u t}=860 N / mm ^{2} .
S_{y t}=690 N / mm ^{2} \quad R=50 \% .
Step I Endurance limit stress for cantilever beam
S_{e}^{\prime}=0.5 S_{u t}=0.5(860)=430 N / mm ^{2} .
From Fig. 5.24 (machined surface and S_{u t}=860 \left. N / mm ^{2}\right).
K_{a}=0.72 .
\text { For } 10 mm \text { diameter wire, } K_{b}=0.85 .
For 50% reliability,
K_{c}=1.0 .
S_{e}=K_{a} K_{b} K_{c} S_{e}^{\prime} .
=0.72(0.85)(1.0)(430)=263.16 N / mm ^{2} .
\left(M_{b}\right)_{\max .}=150 \times 500=75000 N – mm .
\left(M_{b}\right)_{\min .}=75 \times 500=37500 N – mm .
\left(M_{b}\right)_{m}=\frac{1}{2}\left[\left(M_{b}\right)_{\max .}+\left(M_{b}\right)_{\min .}\right] .
=\frac{1}{2}[75000+37500]=56250 N – mm .
\left(M_{b}\right)_{a}=\frac{1}{2}\left[\left(M_{b}\right)_{\max .}-\left(M_{b}\right)_{\min .}\right] .
=\frac{1}{2}[75000-37500]=18750 N – mm .
\sigma_{m}=\frac{32\left(M_{b}\right)_{m}}{\pi d^{3}}=\frac{32(56250)}{\pi(10)^{3}}=572.96 N / mm ^{2} .
\sigma_{a}=\frac{32\left(M_{b}\right)_{a}}{\pi d^{3}}=\frac{32(18750)}{\pi(10)^{3}}=190.99 N / mm ^{2} .
The modified Goodman diagram for this example is shown in Fig. 5.47. The point X with coordinates (572.96, 190.99) falls outside the region of safety.
This indicates a finite life for the spring. The value of S_{f} is obtained by joining C to X and then extending the line to the ordinate. Point A gives the value of S_{f}.
From similar triangles XDC and AOC,
\frac{\overline{X D}}{\overline{A O}}=\frac{\overline{D C}}{\overline{O C}} .
S_{f}=\overline{A O}=\frac{\overline{X D} \times \overline{O C}}{\overline{D C}}=\frac{190.99(860)}{(860-572.96)} .
=572.22 N / mm ^{2} .
Step III Construction of S–N diagram
0.9 S_{u t}=0.9(860)=774 N / mm ^{2} .
\log _{10}\left(0.9 S_{u t}\right)=\log _{10}(774)=2.8887 .
\log _{10}\left(S_{e}\right)=\log _{10}(263.16)=2.4202 .
\log _{10}\left(S_{f}\right)=\log _{10}(572.22)=2.7576 .
The S–N curve for this problem is shown in Fig. 5.48.
Step IV Fatigue life of cantilever spring From Fig. 5.48,
\overline{E F}=\frac{\overline{D B} \times \overline{A E}}{\overline{A D}}=\frac{(6-3)(2.8887-2.7576)}{(2.8887-2.4202)} .
=0.8395 .
\log _{10} N=3+\overline{E F}=3+0.8395=3.8395 .
N = 6910.35 cycles.