Question 4.4: A centrifugal impeller of 40-cm diameter is used to pump hyd...

A centrifugal impeller of 40-cm diameter is used to pump hydrogen at 15 C and 1-atm pressure. Estimate the maximum allowable impeller rotational speed to avoid compressibility effects at the blade tips.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

• Assumptions: The maximum fluid velocity is approximately equal to the impeller tip speed:

V_{max} \approx \Omega r_{max}         where    r_{max} = D/2 = 0.20  m

• Approach: Find the speed of sound of hydrogen and make sure that V_{max} is much less.

• Property values: From Table A.4 for hydrogen, R = 4124 m^2/(s^2 – K) and k = 1.41. From Eq. (1.39) at 15°C  = 288K, compute the speed of sound:

\frac{dx}{u} = \frac{dy}{v} = \frac{dz}{w} = \frac{dr}{V}                    (1.39)

a_{H_2} = \sqrt{kRT} = \sqrt{1.41[4124  m^2/(s^2 – K)](288  K)} \approx 1294  m/s
Table A.4 Properties of Common Gases at 1 atm and 20°C (68°F)
Gas Molecular
weight
R,  m^2/(s^2 \cdot K) \rho g,  N/m^3 \mu,  N \cdot s/m^2 Specific-heat
ratio
Power-law
exponent n^*
H_2 2.016 4124 0.822 9.05 E-6 1.41 0.68
He 4.003 2077 1.63 1.97 E-5 1.66 0.67
H_2O 18.02 461 7.35 1.02 E-5 1.33 1.15
Ar 39.944 208 16.3 2.24 E-5 1.67 0.72
Dry air 28.96 287 11.8 1.8 E-5 1.40 0.67
CO_2 44.01 189 17.9 1.48 E-5 1.30 0.79
CO 28.01 297 11.4 1.82 E-5 1.40 0.71
N_2 28.02 297 11.4 1.76 E-5 1.40 0.67
O_2 32.00 260 13.1 2.00 E-5 1.40 0.69
NO 30.01 277 12.1 1.90 E-5 1.40 0.78
N_2O 44.02 189 17.9 1.45 E-5 1.31 0.89
Cl_2 70.91 117 28.9 1.03 E-5 1.34 1.00
CH_4 16.04 518 6.54 1.34 E-5 1.32 0.87

^*The power-law curve fit, Eq. (1.27), \mu / \mu_{293K} \approx (T/293)^n, fits these gases to within ±4 percent in the range 250 ≤ T ≤ 1000 K. The temperature must be in kelvins.

\frac{\mu}{\mu_0} \approx \begin{cases} \left(\frac{T}{T_0}\right)^n & power  law \\ \frac{(T/T_0)^{3/2} (T_0 + S)}{T+S} & Sutherland  law \end{cases}                     (1.27)

• Final solution step: Use our rule of thumb, Eq. (4.18), to estimate the maximum impeller speed:

Ma ≤ 0.3                      (4.18)

V = \Omega r_{max} \leq 0.3a         or           \Omega(0.2  m) \leq 0.3(1294  m/s)

Solve for             \Omega \leq 1940\frac{rad}{s} \approx 18,500\frac{rev}{min}                   Ans.

• Comments: This is a high rate because the speed of sound of hydrogen, a light gas, is nearly four times greater than that of air. An impeller moving at this speed in air would create tip shock waves.

Related Answered Questions