A centrifugal impeller of 40-cm diameter is used to pump hydrogen at 15 C and 1-atm pressure. Estimate the maximum allowable impeller rotational speed to avoid compressibility effects at the blade tips.
A centrifugal impeller of 40-cm diameter is used to pump hydrogen at 15 C and 1-atm pressure. Estimate the maximum allowable impeller rotational speed to avoid compressibility effects at the blade tips.
• Assumptions: The maximum fluid velocity is approximately equal to the impeller tip speed:
V_{max} \approx \Omega r_{max} where r_{max} = D/2 = 0.20 m• Approach: Find the speed of sound of hydrogen and make sure that V_{max} is much less.
• Property values: From Table A.4 for hydrogen, R = 4124 m^2/(s^2 – K) and k = 1.41. From Eq. (1.39) at 15°C = 288K, compute the speed of sound:
\frac{dx}{u} = \frac{dy}{v} = \frac{dz}{w} = \frac{dr}{V} (1.39)
a_{H_2} = \sqrt{kRT} = \sqrt{1.41[4124 m^2/(s^2 – K)](288 K)} \approx 1294 m/s
Table A.4 Properties of Common Gases at 1 atm and 20°C (68°F)
|
||||||
Gas | Molecular weight |
R, m^2/(s^2 \cdot K) | \rho g, N/m^3 | \mu, N \cdot s/m^2 | Specific-heat ratio |
Power-law exponent n^* |
H_2 | 2.016 | 4124 | 0.822 | 9.05 E-6 | 1.41 | 0.68 |
He | 4.003 | 2077 | 1.63 | 1.97 E-5 | 1.66 | 0.67 |
H_2O | 18.02 | 461 | 7.35 | 1.02 E-5 | 1.33 | 1.15 |
Ar | 39.944 | 208 | 16.3 | 2.24 E-5 | 1.67 | 0.72 |
Dry air | 28.96 | 287 | 11.8 | 1.8 E-5 | 1.40 | 0.67 |
CO_2 | 44.01 | 189 | 17.9 | 1.48 E-5 | 1.30 | 0.79 |
CO | 28.01 | 297 | 11.4 | 1.82 E-5 | 1.40 | 0.71 |
N_2 | 28.02 | 297 | 11.4 | 1.76 E-5 | 1.40 | 0.67 |
O_2 | 32.00 | 260 | 13.1 | 2.00 E-5 | 1.40 | 0.69 |
NO | 30.01 | 277 | 12.1 | 1.90 E-5 | 1.40 | 0.78 |
N_2O | 44.02 | 189 | 17.9 | 1.45 E-5 | 1.31 | 0.89 |
Cl_2 | 70.91 | 117 | 28.9 | 1.03 E-5 | 1.34 | 1.00 |
CH_4 | 16.04 | 518 | 6.54 | 1.34 E-5 | 1.32 | 0.87 |
^*The power-law curve fit, Eq. (1.27), \mu / \mu_{293K} \approx (T/293)^n, fits these gases to within ±4 percent in the range 250 ≤ T ≤ 1000 K. The temperature must be in kelvins.
\frac{\mu}{\mu_0} \approx \begin{cases} \left(\frac{T}{T_0}\right)^n & power law \\ \frac{(T/T_0)^{3/2} (T_0 + S)}{T+S} & Sutherland law \end{cases} (1.27)
• Final solution step: Use our rule of thumb, Eq. (4.18), to estimate the maximum impeller speed:
Ma ≤ 0.3 (4.18)
V = \Omega r_{max} \leq 0.3a or \Omega(0.2 m) \leq 0.3(1294 m/s)Solve for \Omega \leq 1940\frac{rad}{s} \approx 18,500\frac{rev}{min} Ans.
• Comments: This is a high rate because the speed of sound of hydrogen, a light gas, is nearly four times greater than that of air. An impeller moving at this speed in air would create tip shock waves.