A charge distribution with spherical symmetry has density
\rho_{v}=\begin{cases}\frac{\rho_{o}r}{R}, & 0\leq r\leq R \\0, & r\gt R\end{cases}
Determine E everywhere.
A charge distribution with spherical symmetry has density
\rho_{v}=\begin{cases}\frac{\rho_{o}r}{R}, & 0\leq r\leq R \\0, & r\gt R\end{cases}
Determine E everywhere.
The charge distribution is similar to that in Figure 4.16. Since symmetry exists, we can apply Gauss’s law to find E.
\varepsilon _{o}\oint_{S}E\cdot dS=Q_{enc}=\int_{v}\rho_{v}dv
(a) For r \lt R
\varepsilon _{o}E_{r}4\pi r^{2}=Q_{enc}=\int_{0}^{r}\int_{0}^{\pi}\int_{0}^{2\pi}\rho_{v}r^{2}\sin\theta d\phi d\theta dr
=\int_{0}^{r}4\pi r^{2}\frac{\rho _{o}r}{R}dr= \frac{\rho _{o}\pi r^{4}}{R}
or
E=\frac{\rho _{o}r^{2}}{4\varepsilon _{o} R}a_{r}
(b) For r\gt R
\varepsilon _{o}E_{r}4\pi r^{2}=Q_{enc}=\int_{0}^{r}\int_{0}^{\pi}\int_{0}^{2\pi}\rho_{v}r^{2}\sin\theta d\phi d\theta dr
=\int_{0}^{R}\frac{\rho _{o}r}{R}4\pi r^{2}dr+\int_{R}^{r}0\cdot4\pi r^{2}dr= \pi\rho _{o}R^{3}
or
E=\frac{\rho _{o}R^{3}}{4\varepsilon _{o} r^{2}}a_{r}