Question 8.1: A charged particle of mass 2 kg and charge 3 C starts at poi...

A charged particle of mass 2 kg and charge 3C starts at point (1,-2,0) with velocity 4a_{x}+3a_{z} m/s in an electric field 12a_{x}+10a_{y} V/m. At time t=1 s, determine

(a) The acceleration of the particle

(b) Its velocity

(c) Its kinetic energy

(d) Its position

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) This is an initial-value problem because initial values are given. According to Newton’s second law of motion

F=ma=QE

where a is the acceleration of the particle. Hence

a=\frac{QE}{m}=\frac{3}{2}(12a_{x}+10a_{y})=18a_{x}+15a_{y} m/s^{2}

a=\frac{du}{dt}=\frac{d}{dt}(u_{x},u_{y},u_{z})=18a_{x}+15a_{y}

(b) Equating components and then integrating, we obtain

\frac{du_{x}}{dt}=18\rightarrow u_{x}=18t+A                              (8.1.1)

\frac{du_{y}}{dt}=15\rightarrow u_{y}=15t+B                             (8.1.2)

\frac{du_{z}}{dt}=0\rightarrow u_{z}=C                                            (8.1.3)

where A, B, and C are integration constants. But at t=0,  u=4a_{x}+3a_{z}. Hence,

u_{x}(t=0)=4\rightarrow 4=0+A   or   A=4

u_{y}(t=0)=0\rightarrow 0=0+B   or   B=0

u_{z}(t=0)=3\rightarrow 3=C

Substituting the values of A, B, and C into eqs. (8.1.1) to (8.1.3) gives

u(t)=(u_{x},u_{y},u_{z})=(18t+4,15t,3)

Hence

u(t=1s)=22a_{x}+15a_{y}+3a_{z}m/s

(c) Kinetic energy

(K.E.)=\frac{1}{2}m|u|^{2}=\frac{1}{2}(2)(22^{2}+15^{2}+3^{2})=718J

(d)

u=\frac{dl}{dt}=\frac{d}{dt}(x,y,z)=(18t+4,15t,3)

Equating components yields

\frac{dx}{dt}=u_{x}=18t+4\rightarrow x=9t^{2}+4t+A_{1}                             (8.1.4)

\frac{dy}{dt}=u_{y}=15t \rightarrow y=7.5t^{2}+B_{1}                                       (8.1.5)

\frac{dz}{dt}=u_{z}=3\rightarrow z=3t+C_{1}                                                    (8.1.6)

At t=0,  (x,y,z)=(1,-2,0); hence

x(t=0)=1\rightarrow 1=0+A_{1}   or   A_{1}=1

y(t=0)=-2\rightarrow -2=0+B_{1}   or   B_{1}=-2

z(t=0)=0\rightarrow 0=0+C_{1}   or   C_{1}=0

Substituting the values of A_{1},  B_{1}, and C_{1} into eqs. (8.1.4) to (8.1.6), we obtain

(x,y,z)=(9t^{2}+4t+1,7.5t^{2}-2,3t)                            (8.1.7)

Hence, at t=1,  (x,y,z)=(14,5.5,3).

By eliminating t in eq. (8.1.7), the motion of the particle may be described in terms of x, y, and z.

Related Answered Questions