Question 8.2: A charged particle of mass 2kg and 1C starts at the origin w...

A charged particle of mass 2kg and 1C starts at the origin with velocity 3a_{y}m/s and travels in a region of uniform magnetic field B=10a_{z}Wb/m^{2}. At t = 4s, do the following.

(a) Calculate the velocity and acceleration of the particle.

(b) Calculate the magnetic force on it.

(c) Determine its K.E. and location.

(d) Find the particle’s trajectory by eliminating t.

(e) Show that its K.E. remains constant.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a)

F=m\frac{du}{dt}=Qu\times B

a=\frac{du}{dt}=\frac{Q}{m}u\times B

Hence

\frac{d}{dt}(u_{x}a_{x}+u_{y}a_{y}+u_{z}a_{z})=\frac{1}{2}\left|\begin{matrix} a_{x} & a_{y} & a_{z} \\ u_{x} & u_{y} & u_{z} \\ 0 & 0 & 10 \end{matrix}\right| =5(u_{y}a_{x}-u_{x}a_{y})

By equating components, we get

\frac{du_{x}}{dt}=5u_{y}                                                    (8.2.1)

\frac{du_{y}}{dt}=-5u_{x}                                                   (8.2.2)

\frac{du_{z}}{dt}=0\rightarrow u_{z}=C_{o}                                            (8.2.3)

We can eliminate u_{x} or u_{y} in eqs. (8.2.1) and (8.2.2) by taking second derivatives of one equation and making use of the other. Thus

\frac{d^{2}u_{x}}{dt^{2}}=5\frac{du_{y}}{dt}=-25u_{x}

or

\frac{d^{2}u_{x}}{dt^{2}}+25u_{x}=0

which is a linear differential equation with solution (see Case 3 of Example 6.5)

u_{x}=C_{1}\cos5t+C_{2}\sin5t                                              (8.2.4)

From eqs. (8.2.1) and (8.2.4)

5u_{y}=\frac{du_{x}}{dt}=-5C_{1}\sin 5t+5C_{2}\cos5t                        (8.2.5)

or

u_{y}=-C_{1}\sin5t+C_{2}\cos5t

We now determine constants C_{o},  C_{1},  and C_{2} using the initial conditions. At t=0,   u=3a_{y}. Hence

u_{x}=0\rightarrow 0=C_{1}\cdot 1+C_{2}\cdot0\rightarrow C_{1}=0

u_{y}=3\rightarrow 3=-C_{1}\cdot 0+C_{2}\cdot1\rightarrow C_{2}=3

u_{z}=0\rightarrow 0=C_{o}

Substituting the values of C_{o},  C_{1}, and C_{2} into eqs. (8.2.3) to (8.2.5) gives

u=(u_{x},u_{y},u_{z})=(3\sin5t,3\cos5t,0)                        (8.2.6)

Hence

u(t=4)=(3\sin20,3\cos20,0)=2.739a_{x}+1.224a_{y}m/s

a=\frac{du}{dt}=(15\cos5t,-15\sin5t,0)

and

a(t=4)=6.121a_{x}-13.694a_{y}m/s^{2}

(b)

F=ma=12.2a_{x}-27.4a_{y}N

or

F=Qu\times B=(1)(2.739a_{x}+1.224a_{y})\times 10a_{z}=12.2a_{x}-27.4a_{y}N

(c)

K.E.=\frac{1}{2}m|u|^{2}=\frac{1}{2}(2)(2.739^{2}+1.224^{2})=9J

u_{x}=\frac{dx}{dt}=3\sin5t\rightarrow x=-\frac{3}{5}\cos5t+b_{1}                               (8.2.7)

u_{y}=\frac{dy}{dt}=3\cos5t\rightarrow y=\frac{3}{5}\sin5t+b_{2}                                 (8.2.8)

u_{z}=\frac{dz}{dt}=0\rightarrow z=b_{3}                                                                           (8.2.9)

where b_{1},  b_{2}, and b_{3} are integration constants. At t=0, (x,y,z)=(0,0,0) and hence

x(t=0)=0\rightarrow 0=-\frac{3}{5}\cdot1+b_{1}\rightarrow b_{1}=0.6

y(t=0)=0\rightarrow 0=\frac{3}{5}\cdot0+b_{2}\rightarrow b_{2}=0

z(t=0)=0\rightarrow 0=b_{3}

Substituting the values of b_{1},  b_{2}, and b_{3} into eqs. (8.2.7) to (8.2.9), we obtain

(x,y,z)=(0.6-0.6\cos5t,0.6\sin5t,0)                               (8.2.10)

At t=4s

(x,y,z)=(0.3552,0.5478,0)

(d) From eq. (8.2.10), we eliminate t by noting that

(x-0.6)^{2}+y^{2}=(0.6)^{2}(\cos^{2}5t+\sin^{2}5t),      z=0

or

(x-0.6)^{2}+y^{2}=(0.6)^{2},       z=0

which is a circle on plane z=0, centered at (0.6,0,0) and of radius 0.6m. Thus the particle gyrates in an orbit about a magnetic field line.

(e)

K.E.=\frac{1}{2}m|u|^{2}=\frac{1}{2}(2)(9\cos^{2}5t+9\sin^{2}5t)=9J

which is the same as the K.E. at t=0 and t=4s. Thus the uniform magnetic field has no effect on the K.E. of the particle.

Note that the angular velocity \omega =QB/m and the radius of the orbit r=u_{o}/\omega, where u_{o} is the initial speed. An interesting application of the idea in this example is found in a common method of focusing a beam of electrons. The method employs a uniform magnetic field directed parallel to the desired beam as shown in Figure 8.2. Each electron emerging from the electron gun follows a helical path and returns to the axis at the same focal point with other electrons. If the screen of a cathode-ray tube were at this point, a single spot would appear on the screen.

8.2

Related Answered Questions