Question 4.10: (a) Check that A rj1(kr) satisfies the radial equation with ...

(a) Check that A r j_{1}(k r) satisfies the radial equation with V(r)=0 and \ell=1 .

(b) Determine graphically the allowed energies for the infinite spherical well, when \ell=1 . Show that for large N, E_{N 1} \approx\left(\hbar^{2} \pi^{2} / 2 m a^{2}\right)(N+1 / 2)^{2} Hint: First show that j_{1}(x)=0 \Rightarrow x=\tan x . Plot x and \tan x on the same graph, and locate the points of intersection.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a)

u=\operatorname{Arj}_{1}(k r)=A\left[\frac{\sin (k r)}{k^{2} r}-\frac{\cos (k r)}{k}\right]=\frac{A}{k}\left[\frac{\sin (k r)}{(k r)}-\cos (k r)\right] .

\frac{d u}{d r}=\frac{A}{k}\left[\frac{k^{2} r \cos (k r)-k \sin (k r)}{(k r)^{2}}+k \sin (k r)\right]=A\left[\frac{\cos (k r)}{k r}-\frac{\sin (k r)}{(k r)^{2}}+\sin (k r)\right] .

\frac{d^{2} u}{d r^{2}}=A\left[\frac{-k^{2} r \sin (k r)-k \cos (k r)}{(k r)^{2}}-\frac{k^{3} r^{2} \cos (k r)-2 k^{2} r \sin (k r)}{(k r)^{4}}+k \cos (k r)\right] .

=A k\left[-\frac{\sin (k r)}{(k r)}-\frac{\cos (k r)}{(k r)^{2}}-\frac{\cos (k r)}{(k r)^{2}}+2 \frac{\sin (k r)}{(k r)^{3}}+\cos (k r)\right] .

=A k\left[\left(1-\frac{2}{(k r)^{2}}\right) \cos (k r)+\left(\frac{2}{(k r)^{3}}-\frac{1}{(k r)}\right) \sin (k r)\right] .

With V = 0 and \ell=1, \text { Eq. } 4.37 \text { reads: } \frac{d^{2} u}{d r^{2}}-\frac{2}{r^{2}} u=-\frac{2 m E}{\hbar^{2}} u=-k^{2} u . In this case the left side is

-\frac{\hbar^{2}}{2 m} \frac{d^{2} u}{d r^{2}}+\left[V+\frac{\hbar^{2}}{2 m} \frac{\ell(\ell+1)}{r^{2}}\right] u=E u .        (4.37).

A k\left[\left(1-\frac{2}{(k r)^{2}}\right) \cos (k r)+\left(\frac{2}{(k r)^{3}}-\frac{1}{(k r)}\right) \sin (k r)-\frac{2}{(k r)^{2}}\left(\frac{\sin (k r)}{(k r)}-\cos (k r)\right)\right] .

=A k\left[\cos (k r)-\frac{\sin (k r)}{k r}\right]=-k^{2} u .      So this u does satisfy Eq. 4.37.

-\frac{\hbar^{2}}{2 m} \frac{d^{2} u}{d r^{2}}+\left[V+\frac{\hbar^{2}}{2 m} \frac{\ell(\ell+1)}{r^{2}}\right] u=E u .        (4.37).

(b) Equation 4.48 j_{\ell}(k a)=0         (4.48).

\Rightarrow j_{1}(z)=0, \text { where } z=k a . \text { Thus } \frac{\sin z}{z^{2}}-\frac{\cos z}{z}=0 or \tan z = z . For high z (large n, if n = 1, 2, 3, . .. counts the allowed energies in increasing order), the intersections occur slightly below z=\left(n+\frac{1}{2}\right) \pi .

\therefore E=\frac{\hbar^{2} k^{2}}{2 m}=\frac{\hbar^{2} z^{2}}{2 m a^{2}}=\frac{\hbar^{2} \pi^{2}}{2 m a^{2}}\left(n+\frac{1}{2}\right)^{2} . QED

82

Related Answered Questions