(a) Choose {E}_{21} to remove the 3 below the first pivot. Then multiply {E}_{21}A{E}^{T}_{21} to remove both 3 ‘s:
A=\left[ \begin{matrix} 1 & 3 & 0 \\ 3 & 11 & 4 \\ 0 & 4 & 9 \end{matrix} \right] is going toward D =\left[ \begin{matrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{matrix} \right].
(b) Choose {E}_{32} to remove the 4 below the second pivot. Then A is reduced to D by {E}_{32}{E}_{21}A{E}^{T}_{21}{E}^{T}_{32} = D. Invert the E’s to find L in A = LD{L}^{T}.