Ethylbenzene is the more volatile component.
\text { Antoine equations, ethylbenzene, } \ln P^{\circ}=9.386-\frac{3279.47}{T-59.95}
\text { styrene } \ln P^{\circ}=9.386-\frac{3328.57}{T-63.72}
P bar, T Kelvin
Material balance, basis 100 kmol feed:
\text { at } 85 \text { per cent recovery, styrene in bottoms }=50 \times 0.85=42.5 kmol
\text { at } 99.5 \text { per cent purity, ethylbenzene in bottoms }=\frac{42.5}{99.5} \times 0.5=0.21 kmol
ethylbenzene in the tops = 50 – 0.21 = 49.79 kmol
styrene in tops = 50 – 42.5 = 7.5 kmol
\text { mol fraction ethylbenzene in tops }=\frac{49.79}{49.79+7.5}=0.87
z_{f}=0.5, x_{b}=0.005, x_{d}=0.87
Column bottom temperature, from Antoine equation for styrene
\ln 0.2=9.386-\frac{3328.57}{T-63.72}
T=366 K , 93.3^{\circ} C
At 93.3^{\circ} C, vapour pressure of ethylbenzene
\ln P^{\circ}=9.386-\frac{3279.47}{366.4-59.95}=0.27 bar
\text { Relative volatility }=\frac{P^{\circ} \text { ethylbenzene }}{P^{\circ} \text { styrene }}=\frac{0.27}{0.20}=1.35
The relative volatility will change as the compositions and (particularly for a vacuum column) the pressure changes up the column. The column pressures cannot be estimated until the number of stages is known; so as a first trial the relative volatility will be taken as constant, at the value determined by the bottom pressure.
Rectifying section
s=\frac{8}{8+1}=0.89 (11.35)
b=\frac{0.87}{8+1}=0.097 (11.36)
0.89(1.35-1) k^{2}+[0.89+0.097(1.35-1)-1.35] k+0.097=0 (11.29)
k = 0.290
x_{0}^{*}=0.87-0.29=0.58 (11.33)
x_{n}^{*}=0.50-0.29=0.21 (11.34)
c=1+(1.35-1) 0.29=1.10 (11.32)
\beta=\frac{0.89 \times 1.10(1.35-1)}{1.35-0.89 \times 1.1^{2}}=1.255 (11.31)
N=\log \left[\frac{0.58(1-1.255 \times 0.21)}{0.21(1-1.255 \times 0.58)}\right] / \log \left(\frac{1.35}{0.89 \times 1.1^{2}}\right) =\frac{\log 7.473}{\log 1.254}=8.87, \underline{\underline{\text { say } 9}} (11.30)
Stripping section, feed taken as at its bubble point
s=\frac{8 \times 0.5+0.87-(8+1) 0.005}{(8+1)(0.5-0.005)}=1.084 (11.39)
b=\frac{(0.5-0.87) 0.005}{(8+1)(0.5-0.005)}=-4.15 \times 10^{-4}(\text { essentially zero }) (11.40)
1.084(1.35-1) k^{2}+\left[1.084-4.15 \times 10^{-4}(1.35-1)-1.35\right] k-4.15 \times 10^{-4}
k = 0.702
x_{0}^{*}=0.5-0.702=-0.202 (11.37)
x_{n}^{*}=0.005-0.702=-0.697 (11.38)
c=1+(1.35-1) 0.702=1.246 (11.32)
\beta=\frac{1.084 \times 1.246(1.35-1)}{1.35-1.084 \times 1.246^{2}}=-1.42 (11.31)
N=\log \left[\frac{-0.202(1-0.697 \times 1.42)}{-0.697(1-0.202 \times 1.42)}\right] / \log \left(\frac{1.35}{1.084 \times 1.246^{2}}\right) =\frac{\log \left[4.17 \times 10^{-3}\right]}{\log 0.8}=24.6, \text { say } 25 (11.30)