(a) Compute {A}^{T}A and its eigenvalues and unit eigenvectors {v}_{1} and {v}_{2}. Find {\sigma}_{1}.
Rank one matrix \quad A =\begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}
(b) Compute A{A}^{T} and its eigenvalues and unit eigenvectors {u}_{1} and {u}_{2}.
(c) Verify that A{v}_{1}= {\sigma}_{1}{u}_{1}. Put numbers into the SVD:
A=U\Sigma{V}^{T} \quad \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}=\left[ \begin{matrix} {u}_{1}& {u}_{2}\end{matrix} \right] \begin{bmatrix} {\sigma}_{1} & \\ & 0 \end{bmatrix}{ \left[ \begin{matrix} {v}_{1}& {v}_{2}\end{matrix} \right] }^{ T }.