Question 2.11: (a) Compute (x) , (p) , (x^2), and (p^2), for the states ψ0 ...

(a) Compute \left\langle x\right\rangle , \left\langle p\right\rangle  , \left\langle x^2\right\rangle , and \left\langle p^2\right\rangle , for the states ψ_0 (Equation 2.60) and ψ_1 (Equation 2.63), by explicit integration. Comment: In this and other problems involving the harmonic oscillator it simplifies matters if you introduce the variable \xi \equiv \sqrt{m \omega / \hbar} x and the constant \alpha \equiv(m \omega / \pi \hbar)^{1 / 4} .

\psi_{0}(x)=\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} e^{-\frac{m \omega}{2\hbar} x^{2}}         (2.60)

\psi_{1}(x)=A_{1} \hat{a}_{+} \psi_{0}=\frac{A_{1}}{\sqrt{2 \hbar m \omega}}\left(-\hbar \frac{d}{d x}+m \omega x\right)\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} e^{-\frac{m \omega}{2 \hbar} x^{2}} =A_{1}\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} \sqrt{\frac{2 m \omega}{\hbar}} x e^{-\frac{m \omega}{2 \hbar} x^{2}}     (2.63).

(b) Check the uncertainty principle for these states.

c) Compute \left\langle T\right\rangle and \left\langle T\right\rangle for these states. (No new integration allowed!) Is their sum what you would expect?

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) Note that ψ_0 is even, and ψ_1 is odd. In either case \left|\psi \right| ^2 is even, so \langle x\rangle=\int x|\psi|^{2} d x= 0 , Therefore \langle p\rangle=m d\langle x\rangle / d t= 0 . (These results hold for any stationary state of the harmonic oscillator.)

From Eqs. 2.60 and 2.63,

\psi_{0}(x)=\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} e^{-\frac{m \omega}{2\hbar} x^{2}}         (2.60).

\psi_{1}(x)=A_{1} \hat{a}_{+} \psi_{0}=\frac{A_{1}}{\sqrt{2 \hbar m \omega}}\left(-\hbar \frac{d}{d x}+m \omega x\right)\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} e^{-\frac{m \omega}{2 \hbar} x^{2}} =A_{1}\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} \sqrt{\frac{2 m \omega}{\hbar}} x e^{-\frac{m \omega}{2 \hbar} x^{2}}     (2.63).

\psi_{0}=\alpha e^{-\xi^{2} / 2}, \psi_{1}=\sqrt{2} \alpha \xi e^{-\xi^{2} / 2} . So

n = 0:

\left\langle x^{2}\right\rangle=\alpha^{2} \int_{-\infty}^{\infty} x^{2} e^{-\xi^{2}} d x=\alpha^{2}\left(\frac{\hbar}{m \omega}\right)^{3 / 2} \int_{-\infty}^{\infty} \xi^{2} e^{-\xi^{2}} d \xi=\frac{1}{\sqrt{\pi}}\left(\frac{\hbar}{m \omega}\right) \frac{\sqrt{\pi}}{2} = \frac{\hbar}{2 m \omega} .

\left\langle p^{2}\right\rangle=\int \psi_{0}\left(\frac{\hbar}{i} \frac{d}{d x}\right)^{2} \psi_{0} d x=-\hbar^{2} \alpha^{2} \sqrt{\frac{m \omega}{\hbar}} \int_{-\infty}^{\infty} e^{-\xi^{2} / 2}\left(\frac{d^{2}}{d \xi^{2}} e^{-\xi^{2} / 2}\right) d \xi .

=-\frac{m \hbar \omega}{\sqrt{\pi}} \int_{-\infty}^{\infty}\left(\xi^{2}-1\right) e^{-\xi^{2}} d \xi=-\frac{m \hbar \omega}{\sqrt{\pi}}\left(\frac{\sqrt{\pi}}{2}-\sqrt{\pi}\right) = \frac{m \hbar \omega}{2} .

n = 1:

\left\langle x^{2}\right\rangle=2 \alpha^{2} \int_{-\infty}^{\infty} x^{2} \xi^{2} e^{-\xi^{2}} d x=2 \alpha^{2}\left(\frac{\hbar}{m \omega}\right)^{3 / 2} \int_{-\infty}^{\infty} \xi^{4} e^{-\xi^{2}} d \xi=\frac{2 \hbar}{\sqrt{\pi} m \omega} \frac{3 \sqrt{\pi}}{4}= \frac{3 \hbar}{2 m \omega} .

\left\langle p^{2}\right\rangle=-\hbar^{2} 2 \alpha^{2} \sqrt{\frac{m \omega}{\hbar}} \int_{-\infty}^{\infty} \xi e^{-\xi^{2} / 2}\left[\frac{d^{2}}{d \xi^{2}}\left(\xi e^{-\xi^{2} / 2}\right)\right] d \xi .

=-\frac{2 m \omega \hbar}{\sqrt{\pi}} \int_{-\infty}^{\infty}\left(\xi^{4}-3 \xi^{2}\right) e^{-\xi^{2}} d \xi=-\frac{2 m \omega \hbar}{\sqrt{\pi}}\left(\frac{3}{4} \sqrt{\pi}-3 \frac{\sqrt{\pi}}{2}\right)= \frac{3 m \hbar \omega}{2} .

(b) n = 0:

\sigma_{x}=\sqrt{\left\langle x^{2}\right\rangle-\langle x\rangle^{2}}=\sqrt{\frac{\hbar}{2 m \omega}} ; \sigma_{p}=\sqrt{\left\langle p^{2}\right\rangle-\langle p\rangle^{2}}=\sqrt{\frac{m \hbar \omega}{2}} .

\sigma_{x} \sigma_{p}=\sqrt{\frac{\hbar}{2 m \omega}} \sqrt{\frac{m \omega \hbar}{2}}=\frac{\hbar}{2} (Right at the uncertainty limit.)

n = 1:

\sigma_{x}=\sqrt{\frac{3 \hbar}{2 m \omega}} ;       \sigma_{p}=\sqrt{\frac{3 m \hbar \omega}{2}} ;      \sigma_{x} \sigma_{p}=3 \frac{\hbar}{2}>\frac{\hbar}{2} .

(c)

\langle T\rangle=\frac{1}{2 m}\left\langle p^{2}\right\rangle = \left\{\begin{array}{l} \frac{1}{4} \hbar \omega(n=0) \\ \frac{3}{4} \hbar \omega(n=1) \end{array}\right\} ;

\langle V\rangle=\frac{1}{2} m \omega^{2}\left\langle x^{2}\right\rangle = \left\{\begin{array}{l} \frac{1}{4} \hbar \omega(n=0) \\ \frac{3}{4} \hbar \omega(n=1) \end{array}\right\} ;

\langle T\rangle+\langle V\rangle=\langle H\rangle= \left\{\begin{array}{l} \frac{1}{2} \hbar \omega(n=0)=E_{0} \\ \frac{3}{2} \hbar \omega(n=1)=E_{1} \end{array}\right\} , as expected.

Related Answered Questions