Question 10.17: A concentric spring is used as a valve spring in a heavy dut...

A concentric spring is used as a valve spring in a heavy duty diesel engine. It consists of two helical compression springs having the same free length and same solid length. The composite spring is subjected to a maximum force of 6000 N and the corresponding deflection is 50 mm. The maximum torsional shear stress induced in each spring is 800 N/mm². The spring index of each spring is 6. Assume same material for two springs and the modulus of rigidity of spring material is 81370 N/mm². The diametral clearance between the coils is equal to the difference between their wire diameters. Calculate:
(i) the axial force transmitted by each spring;
(ii) wire and mean coil diameters of each spring; and
(iii) number of active coils in each spring.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

\text { Given } \quad P=6000 N \quad \delta=50 mm \quad \tau=800 N / mm ^{2} .

C = 6 G = 81370 N/mm²
Step I Axial force transmitted by each spring
The diametral clearance between the coils is equal to the difference between their wire diameters. From Eq. (10.26),

\frac{d_{1}}{d_{2}}=\frac{C}{(C-2)}                 (10.26).

\frac{d_{1}}{d_{2}}=\frac{C}{(C-2)}=\frac{6}{(6-2)}=1.5 .

From Eq. (10.23),

\frac{P_{1}}{P_{2}}=\frac{d_{1}^{2}}{d_{2}^{2}}           (10.23).

\frac{P_{1}}{P_{2}}=\frac{d_{1}^{2}}{d_{2}^{2}}=\left(\frac{d_{1}}{d_{2}}\right)^{2}=(1.5)^{2}=2.25                 (a).

\text { Also, } \quad P_{1}+P_{2}=P=6000 N             (b).

Solving equations (a) and (b) simultaneously,

P_{1}=4153.85 N \text { and } P_{2}=1846.15 N                       (i)

Step II Wire and mean coil diameters
From Eq. (10.7),

K=\frac{4 C-1}{4 C-4}+\frac{0.615}{C}               (10.7)

K=\frac{4 C-1}{4 C-4}+\frac{0.615}{C}=\frac{4(6)-1}{4(6)-4}+\frac{0.615}{6}=1.2525 .

Outer spring
From Eq. (10.13),

\tau=K\left(\frac{8 P C}{\pi d^{2}}\right)                 (10.13).

\tau=K\left(\frac{8 P_{1} C}{\pi d_{1}^{2}}\right) \text { or } 800=(1.2525)\left[\frac{8(4153.85)(6)}{\pi d_{1}^{2}}\right] .

Outer spring
From Eq. (10.13),

\tau=K\left(\frac{8 P C}{\pi d^{2}}\right)                 (10.13).

\tau=K\left(\frac{8 P_{1} C}{\pi d_{1}^{2}}\right) \text { or } 800=(1.2525)\left[\frac{8(4153.85)(6)}{\pi d_{1}^{2}}\right] .

d_{1}=9.97 \text { or } 10 mm .

D_{1}=C d_{1}=6(10)=60 mm             (ii).

Inner spring
From Eq. (10.13),

\tau=K\left(\frac{8 P C}{\pi d^{2}}\right)                 (10.13).

\tau=K\left(\frac{8 P_{2} C}{\pi d_{2}^{2}}\right) \quad \text { or } \quad 800=(1.2525)\left[\frac{8(1846.15)(6)}{\pi d_{2}^{2}}\right] .

d_{2}=6.65 \text { or } 7 mm .

D_{2}=C d_{2}=6(7)=42 mm                  (ii).

Step III Number of active coils
From Eq. (10.8),

\delta=\frac{8 P D^{3} N}{G d^{4}}                 (10.8).

\delta=\frac{8 P_{1} D_{1}^{3} N_{1}}{G d_{1}^{4}} \quad \text { or } \quad 50=\frac{8(4153.85)(60)^{3} N_{1}}{(81370)(10)^{4}} .

N_{1}=5.67 \text { or } 6 \text { coils }                 (iii).

It is assumed that the springs have square and ground ends. Therefore,

\left(N_{t}\right)_{1}=N_{1}+2=6+2=8 \text { coils } .

Since the springs have the same solid length,

\left(N_{t}\right)_{1} d_{1}=\left(N_{t}\right)_{2} d_{2} \quad \text { or } \quad 8(10)=\left(N_{t}\right)_{2}(7) .

\left(N_{t}\right)_{2}=11.43 \text { or } 12 \text { coils }

N_{2}=12-2=10 \text { coils }                     (iii).

Related Answered Questions