Question 8.4: (a) Consider two equal point charges q, separated by a dista...

(a) Consider two equal point charges q, separated by a distance 2a. Construct the plane equidistant from the two charges. By integrating Maxwell’s stress tensor over this plane, determine the force of one charge on the other.

(b) Do the same for charges that are opposite in sign.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a)   (\overleftrightarrow{T} \cdot d a )_{z}=T_{z x} d a_{x}+T_{z y} d a_{y}+T_{z z} d a_{z}.

But for the x y plane d a_{x}=d a_{y}=0, \text { and } d a_{z}=-r d r d \phi (I’ll calculate the force on the upper charge).

(\overleftrightarrow{T} \cdot d a )_{z}=\epsilon_{0}\left(E_{z} E_{z}-\frac{1}{2} E^{2}\right)(-r d r d \phi).

\text { Now } E =\frac{1}{4 \pi \epsilon_{0}} 2 \frac{q}{ᴫ^{2}} \cos \theta \hat{ r }, \text { and } \cos \theta=\frac{r}{ᴫ}, \text { so } E_{z}=0, E^{2}=\left(\frac{q}{2 \pi \epsilon_{0}}\right)^{2} \frac{r^{2}}{\left(r^{2}+a^{2}\right)^{3}} . Therefore

F_{z}=\frac{1}{2} \epsilon_{0}\left(\frac{q}{2 \pi \epsilon_{0}}\right)^{2} 2 \pi \int_{0}^{\infty} \frac{r^{3} d r}{\left(r^{2}+a^{2}\right)^{3}}=\frac{q^{2}}{4 \pi \epsilon_{0}} \frac{1}{2} \int_{0}^{\infty} \frac{u d u}{\left(u+a^{2}\right)^{3}}\left(\text { letting } u \equiv r^{2}\right)

 

=\left.\frac{q^{2}}{4 \pi \epsilon_{0}} \frac{1}{2}\left[-\frac{1}{\left(u+a^{2}\right)}+\frac{a^{2}}{2\left(u+a^{2}\right)^{3}}\right]\right|_{0} ^{\infty}=\frac{q^{2}}{4 \pi \epsilon_{0}} \frac{1}{2}\left[0+\frac{1}{a^{2}}-\frac{a^{2}}{2 a^{4}}\right]=\frac{q^{2}}{4 \pi \epsilon_{0}} \frac{1}{(2 a)^{2}}.

(b) In this case E =-\frac{1}{4 \pi \epsilon_{0}} 2 \frac{q}{ᴫ^{2}} \sin \theta \hat{ z }, \text { and } \sin \theta=\frac{a}{ᴫ} , so

E^{2}=E_{z}^{2}=\left(\frac{q a}{2 \pi \epsilon_{0}}\right)^{2} \frac{1}{\left(r^{2}+a^{2}\right)^{3}}, \text { and hence }(\overleftrightarrow{T} \cdot d a )_{z}=-\frac{\epsilon_{0}}{2}\left(\frac{q a}{2 \pi \epsilon_{0}}\right)^{2} \frac{r d r d \phi}{\left(r^{2}+a^{2}\right)^{3}} . Therefore

F_{z}=-\frac{\epsilon_{0}}{2}\left(\frac{q a}{2 \pi \epsilon_{0}}\right)^{2} 2 \pi \int_{0}^{\infty} \frac{r d r}{\left(r^{2}+a^{2}\right)^{3}}=-\frac{q^{2} a^{2}}{4 \pi \epsilon_{0}}\left[-\frac{1}{4} \frac{1}{\left(r^{2}+a^{2}\right)^{2}}\right]_{0}^{\infty}=-\frac{q^{2} a^{2}}{4 \pi \epsilon_{0}}\left[0+\frac{1}{4 a^{4}}\right]=-\frac{q^{2}}{4 \pi \epsilon_{0}} \frac{1}{(2 a)^{2}} .

8.4

Related Answered Questions