(a) Construct ψ_2(x) .
(b) Sketch ψ_0, ψ_1 , and ψ_2 .
(c) Check the orthogonality of ψ_0, ψ_1 , and ψ_2 , by explicit integration. Hint: If you exploit the even-ness and odd-ness of the functions, there is really only one integral left to do.
(a) Construct ψ_2(x) .
(b) Sketch ψ_0, ψ_1 , and ψ_2 .
(c) Check the orthogonality of ψ_0, ψ_1 , and ψ_2 , by explicit integration. Hint: If you exploit the even-ness and odd-ness of the functions, there is really only one integral left to do.
(a) Using Eqs. 2.48 and 2.60,
\hat{a}_{\pm} \equiv \frac{1}{\sqrt{2 \hbar m \omega}}(\mp i \hat{p}+m \omega x) (2.48).
\psi_{0}(x)=\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} e^{-\frac{m \omega}{2\hbar} x^{2}} . (2.60).
a_{+} \psi_{0}=\frac{1}{\sqrt{2 \hbar m \omega}}\left(-\hbar \frac{d}{d x}+m \omega x\right)\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} e^{-\frac{m \omega}{2 h} x^{2}} .
=\frac{1}{\sqrt{2 \hbar m \omega}}\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4}\left[-\hbar\left(-\frac{m \omega}{2 \hbar}\right) 2 x+m \omega x\right] e^{-\frac{m \omega}{2 \hbar} x^{2}}=\frac{1}{\sqrt{2 \hbar m \omega}}\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} 2 m \omega x e^{-\frac{m \omega}{2 \hbar} x^{2}} .
\left(a_{+}\right)^{2} \psi_{0}=\frac{1}{2 \hbar m \omega}\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} 2 m \omega\left(-\hbar \frac{d}{d x}+m \omega x\right) x e^{-\frac{m \omega}{2 \hbar} x^{2}} .
=\frac{1}{\hbar}\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4}\left[-\hbar\left(1-x \frac{m \omega}{2 \hbar} 2 x\right)+m \omega x^{2}\right] e^{-\frac{m \omega}{2 \hbar} x^{2}}=\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4}\left(\frac{2 m \omega}{\hbar} x^{2}-1\right) e^{-\frac{m \omega}{2 \hbar} x^{2}} .
Therefore, from Eq. 2.68,
\psi_{n}=\frac{1}{\sqrt{n !}}\left(\hat{a}_{+}\right)^{n} \psi_{0} (2.68).
\psi_{2}=\frac{1}{\sqrt{2}}\left(a_{+}\right)^{2} \psi_{0} = \frac{1}{\sqrt{2}}\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4}\left(\frac{2 m \omega}{\hbar} x^{2}-1\right) e^{-\frac{m \omega}{2 h} x^{2}} .
(b)
(c) Since ψ_0 and ψ_2 are even, whereas ψ_1 is odd, \int \psi_{0}^{*} \psi_{1} d x vanish automatically. The only one we need to check is \int \psi_{2}^{*} \psi_{0} d x ;
\int \psi_{2}^{*} \psi_{0} d x=\frac{1}{\sqrt{2}} \sqrt{\frac{m \omega}{\pi \hbar}} \int_{-\infty}^{\infty}\left(\frac{2 m \omega}{\hbar} x^{2}-1\right) e^{-\frac{m \omega}{h} x^{2}} d x .
=-\sqrt{\frac{m \omega}{2 \pi \hbar}}\left(\int_{-\infty}^{\infty} e^{-\frac{m \omega}{h} x^{2}} d x-\frac{2 m \omega}{\hbar} \int_{-\infty}^{\infty} x^{2} e^{-\frac{m \omega}{h} x^{2}} d x\right) .
=-\sqrt{\frac{m \omega}{2 \pi \hbar}}\left(\sqrt{\frac{\pi \hbar}{m \omega}}-\frac{2 m \omega}{\hbar} \frac{\hbar}{2 m \omega} \sqrt{\frac{\pi \hbar}{m \omega}}\right)=0 .