Question 2.10: (a) Construct ψ2(x). (b) Sketch ψ0, ψ1, and ψ2. (c) Check th...

(a) Construct ψ_2(x) .

(b) Sketch ψ_0, ψ_1 , and ψ_2 .

(c) Check the orthogonality of  ψ_0, ψ_1 , and ψ_2 , by explicit integration. Hint: If you exploit the even-ness and odd-ness of the functions, there is really only one integral left to do.

The Blue Check Mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) Using Eqs. 2.48 and 2.60,

\hat{a}_{\pm} \equiv \frac{1}{\sqrt{2 \hbar m \omega}}(\mp i \hat{p}+m \omega x)         (2.48).

\psi_{0}(x)=\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} e^{-\frac{m \omega}{2\hbar} x^{2}} .      (2.60).

a_{+} \psi_{0}=\frac{1}{\sqrt{2 \hbar m \omega}}\left(-\hbar \frac{d}{d x}+m \omega x\right)\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} e^{-\frac{m \omega}{2 h} x^{2}} .

=\frac{1}{\sqrt{2 \hbar m \omega}}\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4}\left[-\hbar\left(-\frac{m \omega}{2 \hbar}\right) 2 x+m \omega x\right] e^{-\frac{m \omega}{2 \hbar} x^{2}}=\frac{1}{\sqrt{2 \hbar m \omega}}\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} 2 m \omega x e^{-\frac{m \omega}{2 \hbar} x^{2}} .

\left(a_{+}\right)^{2} \psi_{0}=\frac{1}{2 \hbar m \omega}\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} 2 m \omega\left(-\hbar \frac{d}{d x}+m \omega x\right) x e^{-\frac{m \omega}{2 \hbar} x^{2}} .

=\frac{1}{\hbar}\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4}\left[-\hbar\left(1-x \frac{m \omega}{2 \hbar} 2 x\right)+m \omega x^{2}\right] e^{-\frac{m \omega}{2 \hbar} x^{2}}=\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4}\left(\frac{2 m \omega}{\hbar} x^{2}-1\right) e^{-\frac{m \omega}{2 \hbar} x^{2}} .

Therefore, from Eq. 2.68,

\psi_{n}=\frac{1}{\sqrt{n !}}\left(\hat{a}_{+}\right)^{n} \psi_{0}       (2.68).

\psi_{2}=\frac{1}{\sqrt{2}}\left(a_{+}\right)^{2} \psi_{0} = \frac{1}{\sqrt{2}}\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4}\left(\frac{2 m \omega}{\hbar} x^{2}-1\right) e^{-\frac{m \omega}{2 h} x^{2}} .

(b)

(c) Since ψ_0 and ψ_2 are even, whereas ψ_1 is odd, \int \psi_{0}^{*} \psi_{1} d x vanish automatically. The only one we need to check is \int \psi_{2}^{*} \psi_{0} d x ;

\int \psi_{2}^{*} \psi_{0} d x=\frac{1}{\sqrt{2}} \sqrt{\frac{m \omega}{\pi \hbar}} \int_{-\infty}^{\infty}\left(\frac{2 m \omega}{\hbar} x^{2}-1\right) e^{-\frac{m \omega}{h} x^{2}} d x .

=-\sqrt{\frac{m \omega}{2 \pi \hbar}}\left(\int_{-\infty}^{\infty} e^{-\frac{m \omega}{h} x^{2}} d x-\frac{2 m \omega}{\hbar} \int_{-\infty}^{\infty} x^{2} e^{-\frac{m \omega}{h} x^{2}} d x\right) .

=-\sqrt{\frac{m \omega}{2 \pi \hbar}}\left(\sqrt{\frac{\pi \hbar}{m \omega}}-\frac{2 m \omega}{\hbar} \frac{\hbar}{2 m \omega} \sqrt{\frac{\pi \hbar}{m \omega}}\right)=0 .

12

Related Answered Questions